Analysis of Single-Walled Carbon Nanotube under Compression using Elastic Beam Model

탄성 보 모델을 이용한 탄소나노튜브의 압축거동해석

  • 박노정 (단국대학교 응용물리학과) ;
  • 전윤희 (단국대학교 토목환경공학과) ;
  • 박재균 (단국대학교 토목환경공학과)
  • Received : 2010.08.02
  • Accepted : 2010.08.31
  • Published : 2010.10.31

Abstract

The mechanical properties of Carbon nanotube is superior such that it can be used in many areas of engineering field in the future, though the analysis of the mechanical behavior of nanotube is expensive due to its small size and uniqueness when the molecular dynamics or a generalized function theory is applied. To overcome these disadvantages, the force field between Carbon atoms can be substituted by structural members. In this study, main forces between atoms in Carbon nanotube are described by 0.1 nanometer length circular beams and linear behaviors under compression are investigated. The linear behavior is in good agreement with results by other methods. This method can be used in nonlinear analysis of nanotube when the beam elements are properly configured.

탄소나노튜브는 기계적 성질이 매우 뛰어나기 때문에 앞으로 많이 이용될 수 있는 신소재이지만 작은 크기와 특별한 성질 때문에 해석에 어려움이 있으며, 분자 동역학이나 범함수 이론을 이용한 전자시뮬레이션은 계산이 어렵고 시간이 오래 걸리는 단점이 있다. 이러한 단점을 극복하기 위하여 원자 사이에 작용하는 힘을 구조 부재로 치환하는 방법을 사용할 수 있다. 본 연구에서는 0.1nm 길이의 탄성 보를 사용하여 나노튜브를 구성하는 원자 사이의 힘을 묘사하고 선형 압축거동을 해석하였다. 선형 거동은 기존의 다른 방법을 사용한 결과와 잘 일치하였으며, 보 요소의 특성이 적절하게 정해질 경우 비선형 거동의 연구에도 이용될 수 있을 것이다.

Keywords

References

  1. 박재균 (2005) 미소구조에서의 탄소성 모델, 한국전산구조공학회 논문집, 18(4), pp.453-458.
  2. 양승화, 조맹효 (2007) 분자동역학 시뮬레이션을 이용한 나노 튜브/고분자 나노복합재의 물성 해석, 대한기계학회 논문집A권, 31(2), pp.237-244.
  3. 윤영귀 (2009) 전자구조계산물리학: 밀도범함수이론, 물리학과 첨단기술, Jan/Feb.
  4. Brenner, D.W. (1990) Empirical Potential for Hydrocarbons for use in Simulating the Chemical Vapor Deposition of Diamind Films, Physical Review B, 42(15), pp.9458-9471. https://doi.org/10.1103/PhysRevB.42.9458
  5. Cornwell, C.F., Wille, L.T. (1997) Elastic Properties of Single-Walled Carbon Nanotubes in Compression, Solid State Comm., 101(8), pp.555-558.
  6. Ferrari, M., Granik, V.T., Iman, A., Nadeau, J.C. (1997) Advances in Doublet Mechanics, Springer.
  7. Iijima, S. (1991) Helical Microtubes of Graphite Carbon, Nature, 354, pp.56-58. https://doi.org/10.1038/354056a0
  8. Iijima, S., Barabec, C., Maiti, A., Bernholc, J. (1996) Structural Flexibility of Carbon Nanotubes, J. Chem. Phys, 104(5), pp.2089-2092. https://doi.org/10.1063/1.470966
  9. Kresse, G., Furthmuller, J. (1996a) Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-Wave Basis Set, Physical Review B, 54, pp.11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
  10. Kresse, G., Furthmuller, J. (1996b) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 6, pp.15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  11. Kumar, S. (2004) New Class of Fibers: Composite Made with Carbon Nanotubes Offer Improved Mechanical & Electrical Properties, Georgia Institute of Technology Research News.
  12. Li, C., Chou, T. (2003) A Structural Mechanics Approach for the Analysis of Carbon Nanotubes, Int. J. Solids and Structures, 40, pp.2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  13. Perdew, J.P., Burke, K., Ernzerhof, M. (1996), Generalized Gradient Approximation Made Simple, Physical Review Letters, 77, pp.3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  14. Ru, C.Q. (2000a) Effective Bending Stiffness of Carbon Nanotubes, Physical Review B, 62, pp.9973-9976. https://doi.org/10.1103/PhysRevB.62.9973
  15. Ru, C.Q. (2000b) Elastic Buckling of Single-Walled Carbon Nanotube Ropes Under High Pressure, Physical Review B, 62, pp.10405-10408. https://doi.org/10.1103/PhysRevB.62.10405
  16. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejon, P. (1999) Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes, Physics Review B, 59, pp.12678-12688. https://doi.org/10.1103/PhysRevB.59.12678
  17. Tersoff, J. (1989) Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Physical Review B, 39(8), pp.5566-5568. https://doi.org/10.1103/PhysRevB.39.5566
  18. Tersoff, J. (1992) Energies of Fullerenes, Physical Review B, 46, pp.15546-15549. https://doi.org/10.1103/PhysRevB.46.15546
  19. Wang, X., Zhang, Y.C., Xia, X.H., Huang, C.H. (2004) Effective Bending Modulus of Carbon Nanotube with Rippling Deformation, International Journal of Solids and Structures, 41, pp. 6429-6439.
  20. White, C.T., Robertson, D.H., Mintmire, J.W. (1993) Helical and Rotational Symmetries of Nanoscale Graphite Tubules, Physical Review B, 47(9), pp.5485-5488. https://doi.org/10.1103/PhysRevB.47.5485