Design Method to Control Wind-Induced Vibration of High-Rise Buildings Using Resizing Algorithm

재분배기법을 이용한 고층건물의 풍응답 가속도 조절 설계기법

  • Received : 2009.11.24
  • Accepted : 2010.07.24
  • Published : 2010.10.31

Abstract

As increase of height and slenderness of buildings, serviceability design criteria such as maximum lateral drift and wind-induced vibration level play an important role in structural design of high-rise buildings. Especially, wind-induced vibration is directly related to discomfort of occupants. However, no practical algorithm or design method is available for structural designers to control the acceleration level due to wind. This paper presented a control method for wind-induced vibration of high-rise buildings using the resizing algorithm. The level of vibration due to wind is calculated by well known estimation rules of ASCE 7-02, NBCC 95, SAA83, and Solari method. Based on the fact that the level of wind-induced vibration is inversely proportional to the magnitude of natural periods of buildings, in the design method, natural periods of a high-rise building are modified by redistribution of structural weight according to the resizing algorithm. The design method is applied to wind-induced vibration control design of real 42-story residential building and evaluated the efficiency and effectiveness.

건물의 높이와 세장비가 증가함에 따라 건물의 최대 횡변위와 풍응답 가속도와 같은 사용성 요구조건을 만족시키는 것이 고층건물 구조설계에 있어서 중요한 설계요소가 되고 있다. 풍응답 가속도는 거주자에게 불쾌함을 유발시키는 직접적인 원인이 되지만, 초기 구조 설계단계에서 구조 설계자가 풍응답을 조절할 수 있는 실용적인 방법은 개발되어 있지 못하다. 본 연구에서는 재분배기법을 이용하여 건물의 강성을 조절함으로써 고층건물의 풍응답 가속도를 조절할 수 있는 방법을 제안하였다. ASCE 7-02, NBCC 95, ISO 6897 등의 설계 코드 및 기준에 의하면 고층건물의 풍응답 가속도는 1차 고유주기에 반비례한다는 사실에 근거하여 본 연구에서는 물량을 재분배하여 건물의 1차 고유주기를 조절함으로서 풍응답 가속도를 조절하는 실용적 풍응답 가속도 조절 설계법을 제안한다. 제안된 설계법은 42층 건물의 풍응답 가속도 조절 설계에 적용하여 그 적용성과 효율성을 평가하였다.

Keywords

References

  1. 김준희, 서지현, 박효선 (2004) 지진하중을 받는 철골 구조물의 재분배기법을 이용한 변위조절기법 개발, 대한건축학회논문집 구조계, 20(6), pp.3-10.
  2. 서지현, 박효선 (2004) 횡하중과 연직하중을 받는 고층건물의 변위설계를 위한 재분배기법 개발, 한국전산구조공학회 논문집, 17(1), pp.49-58.
  3. 서지현, 박효선 (2006) 부재그룹핑과 하중조합을 고려한 고층건물 변위 조절 설계법, 한국전산구조공학회 논문집,18(4), pp.357-367.
  4. 日本建築學會 건축물 하중지침 및 설계.
  5. AIK (2005) Standard Design Loads for Buildings, Architectural Institute of Korea, Seoul, Korea.
  6. ASCE 7-02 Standrad (2002) Minimum Design Loads for Buildings and Other Structure.
  7. Bickery B.J., Isyumov N, Davenport AG. (1983) The Role of Damping, Mass and Stiffness in the Reduction of Wind Effects on Structures, Journal of Wind Engineering and Industrial Aerodynamics, 11, pp.285-294. https://doi.org/10.1016/0167-6105(83)90107-1
  8. Bungle S. Taranath (2005) Wind and Earthquake Resisitant Buildings, Structural Analysis and Design, Marcel dekker, New york, USA.
  9. Chan, C.M., Chui, J.K.L. (2005) Wind-Induced Response and Serviceability Design Optimization of Tall Steel Buildings, Engineering Structures, 28, pp.503-513.
  10. Griffis, L.G. (1993) Serviceability Limit States Under Wind Load, Engineering Journal AISC, 1st Qtr, pp.1-16.
  11. ISO Standard 6897 (1994) Guidelines for the Evaluation of the Response of Occupants of Fixed Structure to Low Frequency Horizontal Motion (0.063 to 1Hz), International Organization of Standardization.
  12. Kwok KCS (1988) Effect of Building Shape on Wind- Indeced Response of Tall Buildings, Journal of Wind Engineering and Industrial Aerodynamics, 28, pp.381-390. https://doi.org/10.1016/0167-6105(88)90134-1
  13. Kwok KCS, Bailey P.A. (1987) Aerodynamic Devices for Tall Buildings and Structures, Journal of Engineering Mechanics ASCE, 113, pp.349-365. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(349)
  14. Kwok KCS, Samali B. (1995) Performance of Tunned Mass Dampers Under Wind Loads, Engineering Structures, 17, pp.655-667. https://doi.org/10.1016/0141-0296(95)00035-6
  15. National Building Code of Canada (1995) National Research Council Canada, Ottawa.
  16. Park, H.S., Hong, K.P., Seo. J.H. (2002) Drift Design of Steel-Frame Shear-Wall Systems for Tall Buildings, The Structural Design of Tall Buildings, 11, pp.35-49. https://doi.org/10.1002/tal.187
  17. SAA (1973) Rules for Minimum Design Loads on Structures, AS1170 Part II (wind forces).
  18. Seo, J.H., Park, H.S. (2004) Drift Design Method for High-Rise Buildings Using Dynamic Resizing Algorithm, Proceedings of the CTBUH 2004 Seoul Conference, 2, pp.1052-1056.
  19. Simiu, E., Scanlan, R.H. (1996) Wind effects on structures, John Wiley & Sons, INC, NY, USA.
  20. Solari G. (1982) Alongwind Response Estimation : Closed From Solution, Journal of the Structural Division, 108(ST1), pp.225-244.
  21. Tallin A., Ellingwood B. (1972) Serviceability Limit States: Wind Induced Vibration, Journal of Structural engineering ASCE, 110(1), pp.2424-2437.
  22. Yukio Tamura (1996) Evaluation of Amplitude Dependent Damping and Natural Frequency of Buildings During Strong Winds, Journal of Wind Engineering and Industrial Aerodynamics, pp.15-130.