A Computational Platform for Nonlinear Analysis of Prestressed Concrete Shell Structures

  • Received : 2010.10.16
  • Accepted : 2010.12.06
  • Published : 2010.12.31

Abstract

This paper presents a formulation to include the prestressing effects in available numerical models for the nonlinear material, instantaneous and long-term analysis of prestressed concrete shell structures, based on the displacement formulation of the finite element method. A four-node flat shell element is adopted for nonlinear analysis of prestressed concrete shells. This element was incorporated into an existing general-purpose finite element analysis program. A distinctive characteristic of the element is its capability to simulate the behavior of shells subjected to a variety of types of loading and drilling rotational stiffness. Consequently, the response of prestressed concrete shell structures can be predicted accurately using the proposed nonlinear finite element procedure.

Keywords

References

  1. ACI (2001) Finite Element Analysis of Reinforced Concrete Structures.
  2. ACI Committee 209 (1992) Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures, ACI 209R-92.
  3. Chiu, H.S., Chern, J.C., Chang, K.C. (1996) Longterm Deflection Control in Cantilever Prestressed Concrete Bridges. II: experimental verification, Journal of Engineering Mechanics, ASCE, 122(6), pp.495-501. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:6(495)
  4. Greunen, J.V., Scordelis, A.C. (1983) Nonlinear Analysis of Prestressed Concrete Slabs, Journal of Structural Engineering, ASCE, 109(7), pp.1742-1760. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1742)
  5. Kang, Y.J. (1977) Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced and Prestressed Concrete Frames, UC-SESM Report No. 77-1, University of California, Berkeley.
  6. Kang, Y.J. (1989) SPCFRAME-Computer Program for Nonlinear Segmental Analysis of Planar Prestressed Concrete, UC-SESM Report No. 89-07, University of California, Berkeley.
  7. Kato, B. (1979) Mechanical Properties of Steel Under Load Cycles Idealizing Seismic Action, CEB Bulletin D'Information, 131, pp.7-27.
  8. Kim, T.H., Lee, K.M., Shin, H.M. (2002) Nonlinear Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling Degree of Freedom, ACI Structural Journal, 99(4), pp.418-426.
  9. Kim, T.H., Lee, K.M., Yoon, C.Y., Shin, H.M. (2003) Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Piers Under Earthquake. I: theory and formulation, Journal of Structural Engineering, ASCE, 129(9), pp.1199-1207. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1199)
  10. Kim, T.H., Shin, H.M. (2001) Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures Under Seismic Loads, Journal of the Earthquake Engineering Society of Korea, EESK, 5(2), pp.113-124.
  11. Lanheng, J. (1994) Analysis and Evaluation of a Shell Finite Element with Drilling Degree of Freedom, Masters Thesis, University of Maryland, College Park, Md.
  12. Li, B., Maekawa, K. (1988) Contact Density Model for Stress Transfer Across Cracks in Concrete, Concrete Engineering, JCI, 26(1), pp.123-137.
  13. Maekawa, K., Okamura, H. (1983) The Deformational Behavior and Constitutive Equation of Concrete Using Elasto-Plastic and Fracture Model, Journal of the Faculty of Engineering, University of Tokyo, 37(2), pp.253-328.
  14. Maekawa, K., Pimanmas, A., Okamura, H. (2001) Nonlinear Mechanics of Reinforced Concrete, SPON Press.
  15. Magura, D.D., Sozen, M.A., Siess, C.P. (1964) A Study of Stress Relaxation in Prestressing Reinforcement, PCI Journal, 9(2), pp.13-57.
  16. Mari, A.R. (1984) Nonlinear Geometric, Material and Time Dependent Analysis of Three Dimensional Reinforced and Prestressed Concrete Frames, UCSESM Report No. 84-12, University of California, Berkeley.
  17. Marti, P., Meyboom, J. (1992) Response of Prestressed Concrete Elements to In-Plane Shear Forces, ACI Structural Journal, 89(5), pp.503-514.
  18. Ngo, D., Scordelis, A.C. (1967) Finite Element Analysis of Reinforced Concrete Beams, Proceedings, ACI, 64(3), pp.152-163.
  19. Pavic, A., Reynolds, P., Waldron, P., Bennett, K. (2001) Dynamic Modelling of Post-Tensioned Concrete Floors using Finite Element Analysis, Finite Element in Analysis and Design, 37(4), pp.305-323. https://doi.org/10.1016/S0168-874X(00)00045-7
  20. Rizakalla, S.H., Simmonds, S.H., MacGregor, J.G. (1984), Prestressed Concrete Containment Model, Journal of Structural Engineering, ASCE, 110(4), pp.730-743. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:4(730)
  21. Roca, P., Mari, A.R. (1993a) Numerical Treatment of Prestressing Tendons in the Nonlinear Analysis of Prestressed Concrete Structures, Computers & Structures, 46(5), pp.905-916. https://doi.org/10.1016/0045-7949(93)90152-4
  22. Roca, P., Mari, A.R. (1993b) Nonlinear Geometric and Material Analysis of Prestressed Concrete General Shell Structures, Computers & Structures, 46(5), pp.917-929. https://doi.org/10.1016/0045-7949(93)90153-5
  23. Semblat, J.F., Aouameur, A., Ulm, F.J. (2004) Non Linear Seismic Response of a Low Reinforced Concrete Structure : Modeling by Multilayered Finite Shell Elements, Structural Engineering and Mechanics, 18(2), pp.211-229. https://doi.org/10.12989/sem.2004.18.2.211
  24. Smadi, M.M., Belakhdar, K.A. (2007) Nonlinear Finite Element Analysis of High Strength Concrete Slabs, Computers & Concrete, 4(3).
  25. Talyor, R.L. (2000) FEAP-A Finite Element Analysis Program, Version 7.2 Users Manual, Volume 1 and Volume 2.
  26. Wu, X.H., Otani, S., Shiohara, H. (2001) Tendon Model for Nonlinear Analysis of Prestressed Concrete Structures, Journal of Structural Engineering, ASCE, 127(4), pp.398-405. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(398)
  27. Yamamoto, T., Vecchio, F.J. (2001) Analysis of Reinforced Concrete Shells for Transverse Shear and Torsion, ACI Structural Journal, 98(2), pp.191-200.