DOI QR코드

DOI QR Code

Effects of ATP and ADP on iron uptake in rat heart mitochondria

  • Kim, Mi-Sun (Division of Life Science, College of Natural Sciences, Sookmyung Women's University) ;
  • Song, Eun-Sook (Division of Life Science, College of Natural Sciences, Sookmyung Women's University)
  • Received : 2010.07.29
  • Accepted : 2010.09.01
  • Published : 2010.12.31

Abstract

Iron uptake in mitochondria and fractionated mitochondria compartments was studied to understand iron transport in heart mitochondria. The inner membrane is most active in iron uptake. Mitochondrial uptake was dependent on iron concentration and the amount of mitochondria. Iron transport was inversely proportional to pH in the range of 6.0 to 8.0. Iron transport reached a maximum after 30 min of incubation at $37^{\circ}C$. Iron uptake was inhibited by 1 mM ATP and stimulated by 1 mM ADP. The oxidative phosphorylation inhibitor oligomycin inhibited iron uptake, but rotenone and antimycin A did not. The divalent ions $Mg^{2+}$, $Cu^{2+}$, $Mn^{2+}$, and $Zn^{2+}$ suppressed iron uptake at $10\;{\mu}M$ and stimulated it at 1 mM. The divalent ion $Ca^{2+}$ stimulated iron uptake at $10\;{\mu}M$ and suppressed it at 1 mM, competing with iron. The uptake of calcium was stimulated by 10 to $1000\;{\mu}M$ ATP, while iron uptake was stimulated reciprocally by 10 to $1000\;{\mu}M$ ADP, suggesting that these ions have movements similar to those of ATP and ADP.

Keywords

References

  1. Anghileri LJ, Maincent P, Cordova-Martinez A, Escanero JF. 1994. Effects of albumin and adenosine phosphates on iron transfer from ferric lactate. Biol Trace Elem Res. 40:83-88. https://doi.org/10.1007/BF02916823
  2. Barrientos A. 2002. In vivo and in organello assessment of oxphos activities. Methods. 26:307-316. https://doi.org/10.1016/S1046-2023(02)00036-1
  3. Benz R, Kottke M, Brdiczka D. 1990. The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta. 1022:311-318. https://doi.org/10.1016/0005-2736(90)90279-W
  4. Bessis MC, Jensen WN. 1965. Sideroblastic anaemia, mitochondria and erythroblastic iron. Br J Haematol. 11:49-51. https://doi.org/10.1111/j.1365-2141.1965.tb00083.x
  5. Brand MD, Lehninger AL. 1975. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria. J Biol Chem. 250:7958-7960.
  6. Cederbaum AI, Wainio WW. 1972. Binding of iron and copper to bovine heart mitochondria. II. Effect of mitochondrial metabolism. J Biol Chem. 247:4604-4614.
  7. Chance B, Sies H, Boveris A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59:527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  8. Chuang HY, Patek DR, Hellerman L. 1974. Mitochondrial monoamine oxidase. J Biol Chem. 249:2381-2384.
  9. De Pinto VD, Palmieri F. 1992. Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). J Bioenerg Biomembr. 24:21-26. https://doi.org/10.1007/BF00769526
  10. Garrick MD, Garrick LM. 2009. Cellular iron transport. Biochim Biophys Acta. 1790:309-325. https://doi.org/10.1016/j.bbagen.2009.03.018
  11. Hackenbrock CR, Chazotte B. 1986. Lipid enrichment and fusion of mitochondrial inner membranes. Methods Enzymol. 125:35-43. https://doi.org/10.1016/S0076-6879(86)25006-5
  12. Halliwell B, Gutteridge JM. 1984. Role of iron in oxygen radical reactions. Methods Enzymol. 105:47-56. https://doi.org/10.1016/S0076-6879(84)05007-2
  13. Harman D. 1956. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11:298-300. https://doi.org/10.1093/geronj/11.3.298
  14. Harman D. 1972. A biologic clock: the mitochondria? J Am Geriat Soc. 20:145-147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
  15. Haworth RA, Hunter DR. 2000. Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria. J Bioenerg Biomembr. 32:91-96. https://doi.org/10.1023/A:1005568630151
  16. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA. 1978. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol. 92:187-214.
  17. Jennings RB, Steenbergen C Jr. 1985. Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol. 47:727-749. https://doi.org/10.1146/annurev.ph.47.030185.003455
  18. Kim M, Kim J, Cheon C-I, Cho DH, Park JH, Kim KI, Lee K-H, Song E. 2008. Increased expression of the $F_1F_0$ ATP synthase in response to iron in heart mitochondria. BMB Rep. 2:153-157.
  19. Kim M, Song E. 2010. Iron transport by proteolipoosomes containing mitochondrial F1Fo ATP synthase isolated from rat heart. Biochimie 92:333-342. https://doi.org/10.1016/j.biochi.2010.01.014
  20. Klingenberg M. 2008. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta. 1778:1978-2021. https://doi.org/10.1016/j.bbamem.2008.04.011
  21. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL. 2003. Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem. 278:12305-12309. https://doi.org/10.1074/jbc.C200703200
  22. Lange H, Kispal G, Lill R. 1999. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem. 274:18989-18996. https://doi.org/10.1074/jbc.274.27.18989
  23. Levi S, Rovida E. 2009. The role of iron in mitochondrial function. Biochim Biophys Acta. 1790:629-636. https://doi.org/10.1016/j.bbagen.2008.09.008
  24. Magnus G, Keizer J. 1997. Minimal model of beta-cell mitochondrial $Ca^{2+}$ handling. Am J Physiol. 273:C717-C733. https://doi.org/10.1152/ajpcell.1997.273.2.C717
  25. Minta A, Kao JPY, Tsien RY. 1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 264:8171-8178.
  26. Moreau B, Parekh AB. 2008. $Ca^{2+}$-dependent inactivation of the mitochondrial $Ca^{2+}$ uniporter involves proton flux through the ATP synthase. Curr Biol. 18:855-859. https://doi.org/10.1016/j.cub.2008.05.026
  27. Mullinax TR, Mock JN, McEvily AJ, Harrison JH. 1982. Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. J Biol Chem. 257:13233-13239.
  28. Napier I, Ponka P, Richardson DR. 2005. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood. 105:1867-1874. https://doi.org/10.1182/blood-2004-10-3856
  29. Pande SV, Blanchaer MC. 1971. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 246:402-411.
  30. Pierrel F, Cobine PA, Winge DR. 2007. Metal Ion availability in mitochondria. Biometals. 20:675-682. https://doi.org/10.1007/s10534-006-9052-9
  31. Regitz V, Paulson DJ, Hodach RJ, Little SE, Schaper W, Shug AL. 1984. Mitochondrial damage during myocardial ischemia. Basic Res Cardiol. 79:207-217. https://doi.org/10.1007/BF01908307
  32. Romslo I. 1975. Energy-dependent accumulation of iron by isolated rat liver mitochondria. IV. Relationship to the energy state of the mitochondria. Biochim Biophys Acta. 387:69-79. https://doi.org/10.1016/0005-2728(75)90052-3
  33. Romslo I, Flatmark T. 1973. Energy-dependent accumulation of iron by isolated rat liver mitochondria. II. Relationship to the active transport of $Ca^{2+}$. Biochim Biophys Acta 325:38-46. https://doi.org/10.1016/0005-2728(73)90148-5
  34. Romslo I, Flatmark T. 1974. Energy-dependent accumulation of iron by isolated rat liver mitochondria. 3. Submitochondrial localization of the iron accumulated. Biochim Biophys Acta. 347:160-167. https://doi.org/10.1016/0005-2728(74)90041-3
  35. Russell PJ Jr, Horenstein JM, Goins L, Jones D, Laver M. 1974. Adenylate kinase in human tissue. I. Organ specificity of adenylate kinase isoenzymes. J Biol Chem. 249:1874-1879.
  36. Salnikov V, Lukyanenko YO, Frederick CA, Lederer WJ, Lukyanenko V. 2007. Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys J. 92:1058-1071. https://doi.org/10.1529/biophysj.106.094318
  37. Samson FE, Nelson SR. 2000. The aging brain, metals and oxygen free radicals. Cell Mol Biol (Noisy-le-grand) 46:699-707.
  38. Saris NE, Carafoli E. 2005. A historical review of cellular calcium handling with emphasis on mitochondria. Biochemistry (Mosc) 70:187-194. https://doi.org/10.1007/s10541-005-0100-9
  39. Vile GF, Winterbourn CC, Sutton HC. 1987. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates. Arch Biochem Biophys. 259:616-626. https://doi.org/10.1016/0003-9861(87)90528-5
  40. Whereat AF, Orishino MW, Nelson J. 1969. The location of different synthetic systems for fatty acids in inner and outer mitochondrial membranes from rabbit heart. J Biol Chem. 244:6498-6506.