콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data

  • 정광호 (한림대학교 의과대학 방사선종양학교실) ;
  • 박소아 (한림대학교 의과대학 방사선종양학교실) ;
  • 강세권 (한림대학교 의과대학 방사선종양학교실) ;
  • 황태진 (한림대학교 의과대학 방사선종양학교실) ;
  • 이미연 (한림대학교 의과대학 방사선종양학교실) ;
  • 김경주 (한림대학교 의과대학 방사선종양학교실) ;
  • 배훈식 (한림대학교 의과대학 방사선종양학교실) ;
  • 오도훈 (한림대학교 의과대학 방사선종양학교실)
  • Cheong, Kwang-Ho (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Park, So-Ah (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Kang, Sei-Kwon (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Hwang, Tae-Jin (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Lee, Me-Yeon (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Kim, Kyoung-Joo (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Bae, Hoon-Sik (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Oh, Do-Hoon (Department of Radiation Oncology, Hallym University College of Medicine)
  • 투고 : 2010.09.10
  • 심사 : 2010.12.13
  • 발행 : 2010.12.31

초록

본 연구에서는 콘빔 단층촬영영상(cone beam CT; CBCT) 및 다엽 콜리메이터(multileaf collimator;MLC) 로그데이터를 이용한 적응형 방사선치료기법의 체계를 구축하고, 그 과정에서의 선량 계산 오차의 양상을 팬텀을 이용하여 분석하고자 하였다. Catphan-600 (The Phantom Laboratory, USA) 팬텀을 CT와 CBCT 촬영 후 CT 영상을 이용하여 간단한 단계별조사(step-and-shoot) 방식의 세기조절방사선치료(intensity-modulated radiation therapy; IMRT) 계획을 수립하였다. 이후 빔전달 시 생성된 MLC 로그데이터(Dynalog)를 이용하여 실제 전달된 세그먼트 별 모니터단위(MU) 가중치와 MLC 엽(leaf)의 위치를 구한 후 이를 다시 Pinnacle3에 넣고 선량을 재계산하였다. 초기 치료 계획은 치료 계획용 CT 영상($CT_{plan}$) 및 CBCT 영상($CBCT_{plan}$)에 대하여 계산되었으며, 재구성된 선량 역시 치료 계획용 CT 영상($CT_{recon}$) 및 CBCT 영상($CBCT_{recon}$)에 대하여 계산되었다. 각 선량 계산을 $CT_{plan}$을 기준으로 하여 2차원 선량분포, 감마 인덱스, 선량-부피 히스토그램(dose-volume histogram; DVH)을 이용하여 분석하였다. 2차원 선량분포 및 DVH 분석 모두에서 원래의 치료 계획보다 실제 전달된 선량이 다소 많은 것으로 나타났으나 임상적인 의미는 미미했다. 감마 인덱스의 경우 CBCT에 선량을 계산했을 때 치료 계획 정보나 재구성된 선량 정보를 이용한 경우 모두 오차가 크게 발생했다. 재구성된 선량은 빔의 경계 부분에서 오차가 크게 발생하였으나 그 영향은 CT 및 CBCT 영상 간 차이에 의한 것보다 작았다. CBCT 영상에 전달된 선량을 재구성하게 되면 두 영향이 복합적으로 작용하여 오차는 더 줄어들게 되지만 $CT_{plan}$$CBCT_{plan}$의 차이에 비하여 $CBCT_{plan}$$CBCT_{recon}$ 차이는 상대적으로 작아 전달된 선량의 오차를 평가할 때 불확실성이 커졌다. 그러므로 선량 계산 오차의 양상은 셋업 오차, CBCT 영상을 이용한 선량 계산 오차 및 재구성된 선량 계산의 오차로 나누어 분석될 필요가 있을 것이다.

We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

키워드

참고문헌

  1. Lee L, Le QT, Xing L: Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file. Int J Radiat Oncol Biol Phys 70:634-644 (2008) https://doi.org/10.1016/j.ijrobp.2007.09.054
  2. Chen J, Morin O, Aubin M, Bucci MK, Chuang CF, Pouliot J: Dose-guided radiation therapy with megavoltage cone-beam CT. Br J Radiol 79:S87-98 (2006) https://doi.org/10.1259/bjr/60612178
  3. Court LE, Dong L, Lee AK, et al: An automatic CT-guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer. Int J Radiat Oncol Biol Phys 62:154-163 (2005) https://doi.org/10.1016/j.ijrobp.2004.09.045
  4. Lee L, Mao W, Xing L: The use of EPID-measured leaf sequence files for IMRT dose reconstruction in adaptive radiation therapy. Med Phys 35:5019-5029 (2008) https://doi.org/10.1118/1.2990782
  5. Wu QJ, Thongphiew D, Wang Z, et al: On-line re-optimization of prostate IMRT plans for adaptive radiation therapy. Phys Med Biol 53:673-691 (2008) https://doi.org/10.1088/0031-9155/53/3/011
  6. Schulze D, Liang J, Yan D, Zhang T: Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization. Radiother Oncol 90:367-376 (2009) https://doi.org/10.1016/j.radonc.2008.08.012
  7. Peng C, Ahunbay E, Chen G, Anderson S, Lawton C, Li XA: Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. In Press (2010)
  8. Yoo S, Yin FF: Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66:1553-1561 (2006) https://doi.org/10.1016/j.ijrobp.2006.08.031
  9. Yang Y, Schreibmann E, Li T, Wang C, Xing L: Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol 52:685-705 (2007) https://doi.org/10.1088/0031-9155/52/3/011
  10. Cheung J, Aubry JF, Yom SS, Gottschalk AR, Celi JC, Pouliot J: Dose recalculation and the dose-guided radiation therapy (DGRT) process using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 74:583-592 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.034
  11. Langen KM, Meeks SL, Poole DO, et al: The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 50:4259-4276 (2005) https://doi.org/10.1088/0031-9155/50/18/002
  12. Morin O, Chen J, Aubin M, et al: Dose calculation using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 67:1201-1210 (2007) https://doi.org/10.1016/j.ijrobp.2006.10.048
  13. van Elmpt W, Nijsten S, Petit S, Mijnheer B, Lambin P, Dekker A: 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry. Int J Radiat Oncol Biol Phys 73:1580-1587 (2009) https://doi.org/10.1016/j.ijrobp.2008.11.051
  14. Wendling M, Louwe RJ, McDermott LN, Sonke JJ, van Herk M, Mijnheer BJ: Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. Med Phys 33:259-273 (2006)
  15. Qian J, Lee L, Liu W, et al: Dose reconstruction for volumetric modulated arc therapy (VMAT) using cone-beam CT and dynamic log files. Phys Med Biol 55:3597-3610 (2010) https://doi.org/10.1088/0031-9155/55/13/002
  16. Guan H, Hammoud R, Yin FF: A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup. J Appl Clin Med Phys 10:2954 (2009)
  17. Saw CB, Loper A, Komanduri K, Combine T, Huq S, Scicutella C: Determination of CT-to-density conversion relationship for image-based treatment planning systems. Med Dosim 30:145-148 (2005) https://doi.org/10.1016/j.meddos.2005.05.001
  18. Abate A, Pressello MC, Benassi M, Strigari L: Comparison of IMRT planning with two-step and one-step optimization: A strategy for improving therapeutic gain and reducing the integral dose. Phys Med Biol 54:7183-7198 (2009) https://doi.org/10.1088/0031-9155/54/23/010
  19. Low DA, Harms WB, Mutic S, Purdy JA: A technique for the quantitative evaluation of dose distributions. Med Phys 25: 656-661 (1998) https://doi.org/10.1118/1.598248
  20. Zhong H, Weiss E, Siebers JV: Assessment of dose reconstruction errors in image-guided radiation therapy. Phys Med Biol 53:719-736 (2008) https://doi.org/10.1088/0031-9155/53/3/013
  21. Ezzell GA, Chungbin S: The overshoot phenomenon in step-and-shoot IMRT delivery. J Appl Clin Med Phys 2:138-148 (2001) https://doi.org/10.1120/1.1386508