Traditional Korean Medicine Diagnosis System Based on Basic Ontology

기초 온톨로지 기반 한의 진단 시스템

  • Kim, Sang-Kyun (Information Research Center, Korea Institute of Oriental Medicine) ;
  • Jang, Hyun-Chul (Information Research Center, Korea Institute of Oriental Medicine) ;
  • Kim, Jin-Hyun (Information Research Center, Korea Institute of Oriental Medicine) ;
  • Oh, Young-Taek (Information Research Center, Korea Institute of Oriental Medicine) ;
  • Kim, Chul (Information Research Center, Korea Institute of Oriental Medicine) ;
  • Yea, Sang-Jun (Information Research Center, Korea Institute of Oriental Medicine) ;
  • Song, Mi-Young (Information Research Center, Korea Institute of Oriental Medicine)
  • 김상균 (한국한의학연구원 정보연구센터) ;
  • 장현철 (한국한의학연구원 정보연구센터) ;
  • 김진현 (한국한의학연구원 정보연구센터) ;
  • 오용택 (한국한의학연구원 정보연구센터) ;
  • 김철 (한국한의학연구원 정보연구센터) ;
  • 예상준 (한국한의학연구원 정보연구센터) ;
  • 송미영 (한국한의학연구원 정보연구센터)
  • Received : 2010.09.15
  • Accepted : 2010.11.03
  • Published : 2010.12.25

Abstract

We in this paper design and implement a traditional korean medicine diagnosis system based on basic ontology. If doctors put the symptoms or tongues or pulses of a patient in the diagnosis system, they can be recommended for the diagnosis results. To support the doctors decision, the diagnosis system make the inference based on the basic ontology and compute the similarity between symptoms of patient and those of ontology. The diagnosis systems also provide the learning mechanism about diagnosis results which save the results in the ontology and reuse them in the next diagnosis. Thus, doctors can share their knowledge for the diagnosis by exchanging their ontology each other. In future, we will expand the knowledge of the basic ontology continuously so that doctors can get the more accurate diagnosis results. We also implement the prescription function and integrate it to the diagnosis system.

Keywords

References

  1. Robert, A. Greenes. Ontologies, vocabularies, and data models, Clinical Decision Support: The Road Ahead. Boston: Academic press, pp 307-324, 2007.
  2. http://en.wikipedia.org/wiki/Picture_archiving_and_comm unication_system
  3. Jang, H.C., Kim, J.H., Kim, S.K., Kim, C., Bae, S.H., Kim, A.N., Eom, D.M., Song, M.Y. Ontology for medicinal materials based on traditional Korean medicine, Bioinformatics, 26(18):2359-2360, 2010 https://doi.org/10.1093/bioinformatics/btq424
  4. 한국한의학연구원, 온톨로지 기반 한의학 지능형 정보체계연구. 한국한의학연구원 2009년도 최종연구보고서.
  5. OMS-Prime. http://www.omstandard.com/sys/sys_oms.asp
  6. 한국한의학연구원, 한의진단명과 진단요건의 표준화연구(III), 한국한의학연구원 최종연구보고서, 1997.
  7. 박경모, 박종현. 한의학의 증상표현을 위한 방법론. 동의생리병리학회지 16(5):845-850, 2002.
  8. 박종현, 신상우, 정길산, 박경모, 김선호. 한의진단 Ontology 구축과 평가. 동의생리병리학회지 20(1):202-208, 2006.
  9. OWL Web Ontology Language. W3C Recommendation. http://www.w3.org/2004/OWL. 2004.
  10. http://www.oracle.com/technetwork/database/berkeleydb /overview/ index.html
  11. http://office.microsoft.com/en-us/access/
  12. Oracle Berkeley DB Java Edition vs. Apache Derby: A Performance Comparison, An Oracle Technical White Paper, Nov 2006.
  13. http://code.google.com/p/smartgwt/
  14. http://tkm.kiom.re.kr/diagnosis
  15. 김상균, 김진현, 장현철, 김안나, 예상준, 김 철, 송미영. 한의진단 추론과 진단 학습 방법, 동의생리병리학회지 23(5):942-949, 2009.
  16. 전국한의과대학병리학교실. 한방병리학.一中社, pp 205-265.