Protective Effects of Mundongcheongpye-eum on Lung Injury Induced by Elastase

  • Nam, Tae-Heung (Division of Respiratory System, Department of Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Park, Yang-Chun (Division of Respiratory System, Department of Internal Medicine, College of Oriental Medicine, Daejeon University)
  • Received : 2010.01.18
  • Accepted : 2010.10.05
  • Published : 2010.12.25

Abstract

This study aimed to evaluate the protective effects of Mundongcheongpye-eum (MCE) on elastase-induced lung injury. The extract of MCE was treated to A549 cells and elastase-induced lung injury mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. MCE showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B1, Cdc2, and Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. MCE treatment also revealed the protective effect on elastase-induced lung injury in mice model. This effect was evidenced via histopathological finding including immunofluence stains against elastin, collagen, caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that MCE has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of MCE for clinical application to patients with chronic obstructive pulmonary disease.

Keywords

References

  1. Korea National Statistical Office, Republic of Korea [Internet]. Dajeon: Korea National Statistical Office; c1996-[cited 2009 Mar]. Available from: http://www.nso.go.kr
  2. Kim, D.S., Kim, Y.S., Jung, K.S., Chang, J.H., Lim, C.M., Lee, J.H. Prevalence of chronic obstructive pulmonary disease in Korea: a population-based spirometry survey. Am J Respir Crit Care Med. 172(7):842-847, 2005. https://doi.org/10.1164/rccm.200502-259OC
  3. Lopez, A.D., Murray, C.C. The global burden of disease, 1990-2020. Nat Med. 4(11):1241-1243, 1998. https://doi.org/10.1038/3218
  4. Churg, A., Wright, J.L. Proteases and emphysema. Curr Opin Pulm Med. 11(2):153-159, 2005. https://doi.org/10.1097/01.mcp.0000149592.51761.e3
  5. Ioachimescu, O.C., Stoller, J.K. A review of alpha-1 antitrypsin deficiency. COPD. 2(2):263-275, 2005. https://doi.org/10.1081/COPD-57602
  6. Stoller, J.K., Aboussouan, L.S. Alpha1-antitrypsin deficiency. Lancet. 365(9478):2225-2236, 2005. https://doi.org/10.1016/S0140-6736(05)66781-5
  7. Tremblay, G.M., Janelle, M.F., Bourbonnais. Y. Anti-inflammatory activity of neutrophil elastase inhibitors. Curr Opin Investig Drugs. 4(5):556-565, 2003.
  8. Hur, J. Dongeuibogam. Seoul, Namsandang, pp 481-482, 1989.
  9. World Health Organization. WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region. Geneva, World Health Organization, p 176, 2007.
  10. Committee of Oriental Respiratory Medicine. Oriental Internal Medicine of Lung System. Seoul, Gukjin, pp 338-346, 2004.
  11. Xie, Y.C., Dong, X.W., Wu, X.M., Yan, X.F., Xie, Q.M. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice. Int Immunopharmacol. (2):194-200, 2009.
  12. Gross, D., Shenkman, Z., Bleiberg, B., Dayan, M., Gittelson, M., Efrat, R. Ginseng improves pulmonary functions and exercise capacity in patients with COPD. Monaldi Arch Chest Dis. 57(5-6):242-246, 2002.
  13. Zheng, L. Short-term effect and the mechanism of radix Angelicae on pulmonary hypertension in chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi. 15(2):95-97, 1992.
  14. Pauwels, R.A., Buist, A.S., Calverley, P.M., Jenkins, C.R., Hurd, S.S.; GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 163(5):1256-1276, 2001. https://doi.org/10.1164/ajrccm.163.5.2101039
  15. Macnee, W. Pathogenesis of chronic obstructive pulmonary disease. Clin Chest Med. 28(3):479-513, 2007. https://doi.org/10.1016/j.ccm.2007.06.008
  16. Shapiro, S.D. Evolving concepts in the pathogenesis of chronic obstructive pulmonary disease. Clin Chest Med. 21(4):621-632, 2000. https://doi.org/10.1016/S0272-5231(05)70172-6
  17. Marwick, J.A., Kirkham, P., Gilmour, P.S., Donaldson, K., MacNEE, W., Rahman, I. Cigarette smoke-induced oxidative stress and TGF-beta1 increase p21waf1/cip1 expression in alveolar epithelial cells. Ann N Y Acad Sci. 973: 278-283, 2002. https://doi.org/10.1111/j.1749-6632.2002.tb04649.x
  18. Dawkins, P.A., Stockley, R.A. Animal models of chronic obstructive pulmonary disease. Thorax. 56(12):972-977, 2001. https://doi.org/10.1136/thorax.56.12.972
  19. Cawston, T., Carrere, S., Catterall, J., et al. Matrix metalloproteinases and TIMPs: properties and implications for the treatment of chronic obstructive pulmonary disease. Novartis Found Symp. 234: 205-218, 2001.
  20. Nakajoh, M., Fukushima, T., Suzuki, T., et al. Retinoic acid inhibits elastase-induced injury in human lung epithelial cell lines. Am J Respir Cell Mol Biol. 28(3):296-304, 2003. https://doi.org/10.1165/rcmb.4845
  21. Kroemer, G., Martin, S.J. Caspase-independent cell death. Nat Med. 11(7):725-730, 2005. https://doi.org/10.1038/nm1263
  22. Fukuda, Y., Kawamoto, M., Yamamoto, A., Ishizaki, M., Basset, F., Masugi, Y. Role of elastic fiber degradation in emphysema-like lesions of pulmonary lymphangiomyomatosis. Hum Pathol. 21(12):1252-1261, 1990. https://doi.org/10.1016/S0046-8177(06)80039-0
  23. Karlinsky, J., Fredette, J., Davidovits, G., et al. The balance of lung connective tissue elements in elastase-induced emphysema. J Lab Clin Med. 102(2):151-162, 1983.
  24. Kononov, S., Brewer, K., Sakai, H., et al. Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. Am J Respir Crit Care Med. 164(10 Pt 1):1920-1926, 2001. https://doi.org/10.1164/ajrccm.164.10.2101083
  25. Stone, P.J., Calore, J.D., McGowan, S.E., Bernardo, J., Snider, G.L., Franzblau, C. Functional alpha 1-protease inhibitor in the lower respiratory tract of cigarette smokers is not decreased. Science. 221(4616):1187-1189, 1983. https://doi.org/10.1126/science.6612333
  26. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell. 103(2):239-252, 2000. https://doi.org/10.1016/S0092-8674(00)00116-1
  27. Weston, C.R., Davis, R.J. The JNK signal transduction pathway. Curr Opin Genet Dev. 12(1):14-21, 2002. https://doi.org/10.1016/S0959-437X(01)00258-1
  28. Bozon, B., Kelly, A., Josselyn, S.A., Silva, A.J., Davis, S., Laroche, S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci. 358(1432):805-814, 2003. https://doi.org/10.1098/rstb.2002.1224
  29. Whitmarsh, A.J., Davis, R.J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci. 23(12):481-485, 1998. https://doi.org/10.1016/S0968-0004(98)01309-7
  30. Xia, Z., Dickens, M., Raingeaud, J., Davis, RJ., Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 270(5240):1326-1331, 1995. https://doi.org/10.1126/science.270.5240.1326
  31. Mercer, B.A., D'Armiento, J.M. Emerging role of MAP kinase pathways as therapeutic targets in COPD. Int J Chron Obstruct Pulmon Dis. 1(2):137-150, 2006.
  32. Moreno, S., Nurse, P. Substrates for p34cdc2: in vivo veritas? Cell. 61(4):549-551, 1990. https://doi.org/10.1016/0092-8674(90)90463-O
  33. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature. 344(6266):503-508, 1990. https://doi.org/10.1038/344503a0
  34. Pines, J., Hunter, T. Cyclin-dependent kinases: a new cell cycle motif? Trends Cell Biol. 1(5):117-121, 1991. https://doi.org/10.1016/0962-8924(91)90116-Q
  35. Goga, A., Yang, D., Tward, A.D., Morgan, D.O., Bishop, J.M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med. 13(7):820-827, 2007. https://doi.org/10.1038/nm1606
  36. Pines, J. Cyclins: wheels within wheels. Cell Growth Differ. 2(6):305-310, 1991.
  37. Ruddle, N.H. Tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta). Curr Opin Immunol. 4(3):327-332, 1992. https://doi.org/10.1016/0952-7915(92)90084-R
  38. Ruuls, S.R., Sedgwick, J.D. Cytokine-directed therapies in multiple sclerosis and experimental autoimmune encephalomyelitis. Immunol Cell Biol. 76(1):65-73, 1998. https://doi.org/10.1046/j.1440-1711.1998.00715.x