Effect Of Nelumbinis Semen On The Recovery Of The Cardiac Muscle Activity by Proteome Analysis

연자육(蓮子肉)의 심근 경색 모델에 대한 Proteom 분석

  • Ahn, Chang-Joon (Department of Physiology, College of Oriental Medicine, Kyung Hee University) ;
  • Lee, Gi-Hyun (Department of Physiology, College of Oriental Medicine, Kyung Hee University) ;
  • Kim, Yang-Seok (Department of Physiology, College of Oriental Medicine, Kyung Hee University) ;
  • Hong, Moo-Chang (Department of Physiology, College of Oriental Medicine, Kyung Hee University) ;
  • Bae, Hyun-Su (Department of Physiology, College of Oriental Medicine, Kyung Hee University) ;
  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University) ;
  • Shin, Min-Kyu (Department of Physiology, College of Oriental Medicine, Kyung Hee University)
  • 안창준 (경희대학교 한의과대학 생리학교실) ;
  • 이기현 (경희대학교 한의과대학 생리학교실) ;
  • 김양석 (경희대학교 한의과대학 생리학교실) ;
  • 홍무창 (경희대학교 한의과대학 생리학교실) ;
  • 배현수 (경희대학교 한의과대학 생리학교실) ;
  • 김종훈 (전북대학교 수의과대학 수의생리학교실) ;
  • 신민규 (경희대학교 한의과대학 생리학교실)
  • Received : 2010.08.23
  • Accepted : 2010.11.04
  • Published : 2010.12.25

Abstract

The purpose of this investigation was to confirm the effect of Nelumbinis Semen on the recovery of the cardiac muscle activity. We studied the effect of Nelumbinis Semen on the recovery of ischemic SD rat hearts perfused with Nelumbinis Semen, using a model of ex-vivo perfusion (Non-working Langendorff perfusion system) and working heart perfusion system at the same time. To explore the effect of Nelumbinis Semen at the level of proteome, two-dimensional electrophoresis and MALDI-TOF analysis were performed. We found out that the proteins increased after perfusion of Nelumbinis Semen are Mitochondrial aconitase, ATP synthase alpha chain, Lactate dehydrogenase B, Creatine kinase, Glyceraldehyde 3-phosphate dehydrogenase, Alpha B-crystallin, Myosin and Heart fatty acid binding protein. Almost, all of them are concerned with ATP production in the cardiac muscle with glucose metabolism.

Keywords

References

  1. 전국한의과대학 심계내과학교실, 韓方순환.신경내과학, 서울, 군자출판사, p 190, 2010.
  2. Brawnwald, E., Kloner, R.A., Myocardial reperfusion. A double edged sword J Chin Invest 76: 1713-1719, 1985. https://doi.org/10.1172/JCI112160
  3. 전국한의과대학 공동교재편찬위원회, 본초학, 서울, 영림사, p 684, 2004.
  4. 임종윤 외. 허혈심근 Mitochondria의 Superoxide Anion 생성 및 세포손상기전. 순환기학회지 21(6):1137-1151, 1991.
  5. 姜秉宗. 芎夏湯이 再灌流將置下의 흰쥐 摘出心藏에 미치는 영향. 서울, 慶熙大學校大學院, 1997.
  6. 全燦鎔. 虛血性心臟에 대한 勝金湯의 실험적 연구. 서울, 경희대학교대학원, 1994.
  7. 朴貞美. 苓桂朮甘湯이 虛血性疾患에 미치는 영향. 경희대학교, 74: 414-422, 1991.
  8. 金仁變. 과루해백반하탕 및 가미과루해백반하탕 허혈성심질환에 미치는 경향. 한방성인병학회지 11: 187-216, 1995.
  9. 李英彬. 麝香蘇合元이 再灌流將置下의 흰쥐 심장에 미치는 영향. 서울, 경희대학교대학원, 1996.
  10. 崔赫鎕. 導赤散이 적출 흰쥐 심장의 혈역학적 기능에 미치는 영향. 서울, 慶熙大學校大學院, 1996.
  11. Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature. Jun 15: 405(6788):837-846, 2000. https://doi.org/10.1038/35015709
  12. 이진우. 蓮子肉의 항우율 효과 및 프로티움 분석을 통한 기전 연구. 서울, 경희대학교 대학원 학위논문, 2004.
  13. Pedro Monteiro, Ana I. Duarte, Lino M. Goncalves, Antonio Morenoc, Luıs A. Providencia, Protective effect of trimetazidine on myocardial mitochondrial function in an ex-vivo model of global myocardial ischemia, European Journal of Pharmacology, 503: 123-128, 2004. https://doi.org/10.1016/j.ejphar.2004.09.003
  14. Dillmann, W.H., Mehta, H.B., Barrieux, A., Guth, B.D., Neeley, W.E., Ross J Jr. Ischemia of the dog heart induces the appearance of a cardiac mRNA coding for a protein with migration characteristics similar to heat-shock/stress protein 71, Circ Res. 59(1):110-114, 1986. https://doi.org/10.1161/01.RES.59.1.110
  15. Liu, J.H., Ho, S.C., Lai, T.H., Liu, T.H., Chi, P.Y., Wu, R.Y. Protective effects of Chinese herbs on D-galactose-induced oxidative damage, 25(6):447-452, 2003. https://doi.org/10.1358/mf.2003.25.6.769650
  16. la Cour B., Molgaard P. and Yi Z. Traditional Chinese medicine in treatment of hyperlipidaemia. J Ethnopharmacol. 46(2):125-129, 1995. https://doi.org/10.1016/0378-8741(95)01234-5
  17. Klose J. Large-gel 2D electrophoresis. Methods Mol Biol 112: 147-172, 2000.
  18. Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature 405: 837-846, 2000. https://doi.org/10.1038/35015709
  19. Leimgruber, R.M., Malone, J.P., Radabaugh, M.R., Laporte, M.L., Violand, B.N., Monahan, J.B. Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses. Proteomics 2: 135-144, 2002. https://doi.org/10.1002/1615-9861(200202)2:2<135::AID-PROT135>3.0.CO;2-1
  20. Hobrook, J.J., Liljas, A., Steindel, S.J. & Rosmann, M.G. in The Enzymes: Oxidation-Reduction, eds. Boyer, P. (Academic, New York), Vol. 11, Part A: 191-192, 1975.
  21. RUSSELL J. BUONO and ROBYN K. LANG, Exp. Eye Res. Hypoxic Repression of Lactate Dehydrogenase-B in Retina, 69: 685-693, 1999. https://doi.org/10.1006/exer.1999.0745
  22. Markert, C.L., shaklee, J.B. & Whitt, G.S. Science 189: 102-114, 1975. https://doi.org/10.1126/science.1138367
  23. Tsuji, S., Qureshi, M.A., Hou, E.W., Fitch, W.M., Li, S.S. Evolutionary relationships of lactate dehyfrogenases(LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus pig and rat,Proc Natl Acad Sci 91: 9392-9396, 1994. https://doi.org/10.1073/pnas.91.20.9392
  24. W. Qin, Z. Khuchua, J. Cheng, J. Boero, R.M. Payne, A.M. Strauss, Mol. Cell. Biochem 184: 153, 1998. https://doi.org/10.1023/A:1006807515892
  25. K. Anflous, V. Veksler, P. Mateo, F. Samson, V. Saks, R. Ventura-Clapier, Biochem. J. 322: 73, 1997. https://doi.org/10.1042/bj3220073
  26. Muller, M., et al. J. Biol. Chem. 260: 3839-3843, 1985.
  27. Payne, R.M., Haas, R.C. and Strauss, A.W. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes, Biochim. Biophys. Acta 1089(3): 352-361, 1991. https://doi.org/10.1016/0167-4781(91)90176-M
  28. O'Gorman, E., Beutner, G., Wallimann, T., and Brdiczka, D. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochim. Biophys. Acta 1276: 161-171, 1996. https://doi.org/10.1016/0005-2728(96)00074-6
  29. Martin, K.J., Winslow, E.R., O'Keefe, M.O., Khandekar, V.S., Hamlin, A., Lillie, J.W., and Kaddurah-Daouk, R. Specific targeting of tumor cells by the creatine analog cyclocreatine. Int J. Oncol. 9: 993-999, 1996.
  30. Stadhouders, A.M., Jap, P., Winkler, H.P., Eppenberger, H.M., and Wallimann, T. Mitochondrial creatine kinase: A major constituent of pathological inclusions seen in mitochondrial myopathies. Proc. Natl. Acad. Sci. U.S.A 91: 5089-5094, 1994. https://doi.org/10.1073/pnas.91.11.5089
  31. Philip Eaton, William Fuller, James R. Bell and Michael J. Shattock, B Crystallin Translocation and Phosphorylation: Signal Transduction Pathways and Preconditioning in the Isolated Rat Heart, J Mol Cell Cardiol 33: 1659-1671, 2001. https://doi.org/10.1006/jmcc.2001.1418
  32. Ray, P.S., Martin, J.L., Swanson, E.A., Otani, H., Dillman, W.H. Genetically engineered mice overexpressing alpha beta crystallin exhibit protection against myocardial ischemia-reperfusion injury. J Am Coll Cardiol, 35(2):401A. (Abstract), 2000.
  33. Eaton, P., Awad, W.I., Miller JIA., Hearse, D.J., Shattock, M.J. Ischemic preconditioning: A potential role for constitutive low molecular weight stress protein translocation and phosphorylation. J Mol cell Cardiol 32(6): 961-971, 2000. https://doi.org/10.1006/jmcc.2000.1136
  34. http://www.neuro.wustl.edu/neuromuscular/mother/myosin. htm
  35. Veerkamp, J.H. & Maatman, R.G.H.J. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog. Lipid Res. 34: 17-52, 1995. https://doi.org/10.1016/0163-7827(94)00005-7
  36. Haunerland, N.H. Fatty acid binding proteins in locust and mammalian muscle. Comparison of structure, function, and regulation. Comp. Biochem. Physiol. 109B: 199-208, 1994.
  37. Bohmer, F., Kraft, R., Otto, A., Wernstedt, C., Hellman, U., Kurtz, A., Muller, T., Etzold, G., Lehmann, W., Langen, P., Heldin, C. & Grosse, R. Identification of a polypeptide groth inhibitor from bovine mammary gland. J. Biol. Chem. 262: 15136-15143, 1987.