A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment

증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법

  • 이석한 (중앙대학교 첨단영상대학원)
  • Received : 2010.12.11
  • Accepted : 2010.12.30
  • Published : 2010.12.31

Abstract

This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.

본 논문에서는 증강현실 환경에서 보다 강건한 카메라 정보 추정을 위한 입자필터 기반의 카메라 추적 기법에 대해서 설명한다. 실시간 카메라 추적을 위해서는 일반적으로 칼만 필터, 또는 확장 칼만 필터 등이 많이 이용되지만, 카메라의 급격한 흔들림 및 장면의 가려짐 등과 같은 불안정한 조건에서는 정상적인 카메라 추적이 매우 힘들다는 단점이 있다. 본 논문에서 제안하는 입자필터링 기법은 시스템 상태에 대한 측정 표본입자의 가중치를 별도의 가중치 계산과정을 이용하지 않고 가우스 분포를 기반으로 계산하였으며, 카메라 입자를 수렴시키기 위한 별도의 처리과정을 거치지 않고 시스템의 실제 불확실도에 근사화되도록 재표본화된 표본입자 집합을 이용하여 카메라 상태의 추정을 수행하였다. 또한 제안된 방법은 보다 많은 수의 표본 입자를 이용하는 환경에서도 실시간 처리가 가능한 장점이 있다. 실험을 통하여 다양한 환경 하에서 제안된 방법의 효율성과 정확성을 확인하였다.

Keywords

References

  1. D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and M. Tuceryan, "Realtime vision-based camera tracking for augmented reality applications," ACM Symposium on Virtual Reality Software and Technology, pp.87-94, 1997.
  2. T. Drummond and R. Cipolla, "Real-time visual track ing of complex structures," IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 24, No.7, pp.932-946, 2002. https://doi.org/10.1109/TPAMI.2002.1017620
  3. I. Gordon and D.G. Lowe, "Scene modelling, recognition and tracking with invariant image features," International Symposium on Mixed and Augmented Reality, 2004.
  4. A Chiuso, P Favaro, H Jin, and S Soatto, "Structure from motion causally integrated over time," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.4, pp.523-535, 2002. https://doi.org/10.1109/34.993559
  5. D. Nister, "Preemptive RANSAC for live structure and motion estimation," Machine Vision and Applications, Vol.16, No.5, pp.321-329, 2005. https://doi.org/10.1007/s00138-005-0006-y
  6. R. Azuma, "A Survey of Augmented Reality," Teleoperators and Virtual Environments, pp. 355-385, Vol. 6, No.4, Aug. 1997. https://doi.org/10.1162/pres.1997.6.4.355
  7. Z. Zhang, "A Flexible New Technique for Camera Calibration and the Application," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1330-1334, Vol. 22, No. 11, Nov. 2000. https://doi.org/10.1109/34.888718
  8. A. Davison, I. Reid, N. Morton, and O. Stasse, "Mono SLAM: Real-Time Single Camera SLAM," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1052-1067, Vol. 29, No. 6, Jun. 2007. https://doi.org/10.1109/TPAMI.2007.1049
  9. M. Pupilli and A. Calway, "Real-time camera tracking using a particle filter," In Proceedings of the British Machine Vision Conference. (BMVC'05), pp. 43-5 7, Oxford, UK, Sep. 2005.
  10. E. Rosten, and T. Drummond, "Fusing points and lines for high performance tracking," In Proceedings of IEEE International Conference on Computer Vision (ICCV'05), pp. 1508-1511, Beijing, China, Oct. 2005.
  11. E. Rosten, and T. Drummond, "Machine learning for high-speed corner detection," In Proceedings of European Conference on Computer Vision (ECCV'06), pp. 430-443, Graz, Austria, May. 2006.
  12. S. Soatto and P. Perona, "Reducing Structure From Motion: A General Framework for Dynamic Vision Part 1: Modeling," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 933-942, Vol. 20, No. 9, Sep. 1998.
  13. S. Soatto and P. Perona, "Reducing Structure From Motion: A General Framework for Dynamic Vision Part 2: Implementation and Experimental Assessme nt," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 943-960, Vol. 20, No. 9, Sep. 1998. https://doi.org/10.1109/34.713361
  14. D. Simon, "Optimal State Estimation," John Wiley & Sons, Hoboken, NJ, 2006.
  15. R. Hartely, and A. Zisserman, "Multiple-View Geometry in Computer Vision," Cambridge University Press, Cambridge, 2003