
Journal of Digital Contents Society Vol. 11 No. 4 Dec. 2010(pp. 453~461)

모바일 애드 혹 분산 시스템에서 선출 알고리즘의

명세 및 설계

박성훈*

요 약

모바일 애드혹 분산 시스템에서 선출 알고리즘을 명세하고 설계하는 것은 매우 어려운 작업이다. 왜

냐하면 모바일 애드혹 분산 시스템은 기존의 분산시스템보다 시스템의 실패에 취약하기 때문이다. 본

논문의 목적은 모바일 애드혹 분산 컴퓨팅 환경에 적합한 선출 알고리즘을 명세하고 하나의 설계모형을

제시하는데 있다. 이러한 목적을 위하여 본 논문에서는 하나의 선출 알고리즘을 설계하고 알고리즘의

정확성을 정형적으로 검증 하였다. 이러한 해결방안은 기존의 분산시스템에서 고전적인 알고리즘인 노

드 탐지 알고리즘에 기반으로 하고 있다.

Design and Specification of an Election Algorithm in Mobile

Ad Hoc Distributed Systems

Sung-Hoon Park*

Abstract
Specifying and designing the election algorithm in mobile ad hoc distributed systems is very

difficult task. It is because mobile ad hoc systems are more prone to failures than conventional

distributed systems. The aim of this paper is to propose a specification and design of the election

algorithm in a specific ad hoc mobile computing environment. For this aim, we specify and design

an election algorithm in this paper. In addition, we formally verify it and show that it is correct.

This solution is based on the nodes detection algorithm that is a classical one for synchronous

distributed systems.

Keywords: Synchronous Distributed Systems, Leader Election, Fault Tolerance, Mobile Ad Hoc

 Environment.

1. Introduction

The Election problem [1] requires that a

unique coordinator be elected from a given

set of processes. The problem has been

widely studied in the research community

※ 제일저자(First Author) : 박성훈

접수일:2010년 10월 04일, 수정일:2010년 12월 19일,

완료일:2010년 12월 27일

* 충북대학교

spark@cbnu.ac.kr

▣ 이 논문은 2009년도 충북대학교 학술연구지원사업

의 연구비지원에 의하여 연구되었음

[2,3,4,5,6,7]. One reason for this wide interest

is that many distributed protocols need an

election protocol. However, despite its

usefulness, to our knowledge there is no

work that has been devoted to this problem

in a mobile ad hoc computing environment.

In mobile ad hoc environments, nodes are

mobile, topologies can change and nodes may

dynamically join/leave a network. In such

networks, leader election can occur frequently,

making it a particularly critical component of

system operation. Mobile ad hoc systems are

more often subject to environmental

adversities which can cause loss of messages

454 디지털콘텐츠학회 논문지 제11권 제4호 (2010. 12)

or data [8]. In particular, a mobile node can

fail or disconnect from the rest of the

network. Specifying and designing fault‐

tolerant distributed algorithms and

applications in such an environment is very

complex endeavor.

The aim of this paper is to propose a

specification and design of the election

algorithm in a specific ad hoc mobile

computing environment. This solution is

based on the nodes detection algorithm that

is a classical one for synchronous distributed

systems. The rest of this paper is organized

as follows: chapter 2 describes the mobile

system model we use. In chapter 3, a

specification to the election problem in a

conventional synchronous system is presented.

A protocol to solve the election problem in a

mobile ad hoc computing system is presented

in chapter 4. We conclude in chapter 5.

2. Mobile System Model and

Assumptions

We model it as asynchronous computation

with failure detection which is the one

described in [9,10]. In the following, we only

recall some informal definitions and results

that are needed in this paper. Before

designing a leader election algorithm for ad‐

hoc computing environments, we first define

our system model based upon assumptions

and goals. We model an ad hoc network as

an undirected graph, i.e., G = (V ,E) where
vertices V correspond to set of mobile nodes

{1,2,….,n} (n>1) with unique identifiers and
edges E between a pair of nodes represent

the fact that the two nodes are within each

other’s transmission radii and, hence, can

directly communicate with one another that

changes over time as nodes move.

Each process i has a variable Ni, which
indicates the neighboring nodes, with that i
can directly communicate the neighboring

nodes. We assume that every communication

channel is bidirectional; ;; j∈ Ni iff i∈ Nj.

More precisely, in the network G = (V ,E) ,
we can define E such that for all i∈V , (i,j)
∈ E if and only if i∈ Nj. The graph can

become disconnected if the network is

partitioned due to node movement. Because

the nodes may changes their location, Ni
may be dynamically changed and so may G
accordingly. We make the following

assumptions about the nodes and system

architecture. Each node has a weight value

Wi associated with it. The value of a node

indicates its “priority” as a leader of the

system and can be calculated upon some

criteria such as the node’s battery power, the

position where the node’s distance from other

nodes is minimal, computational capabilities

etc. All nodes have unique identifiers. They

are used to identify participants during the

election process. Node identifiers IDs are used

to break ties among nodes which have the

same value.

Links are bidirectional and First In First

Out FIFO, i.e. messages are delivered in

order over a link between two neighbors.

Node mobility may result in arbitrary

topology changes including network

partitioning and merging. Furthermore, nodes

can crash arbitrarily at any time and can

come back up again at any time. A message

delivery is guaranteed only when the sender

and the receiver remain connected (not

partitioned) for the entire duration of message

transfer. Each node has a sufficiently large

receive buffer to avoid buffer overflow at any

point in its lifetime.

The objective of our leader election

algorithm is to ensure that after a finite

모바일 애드 혹 분산 시스템에서 선출 알고리즘의 명세 및 설계 455

number of topology changes, eventually each

node i has a leader which is the most‐
valued‐node from among all nodes in the

connected component to which i belongs.

3. Specification of Election

Algorithm

In this chapter, we specify a leader election

algorithm. In later chapters, we will design

our election algorithm based on this

specification.

The specification for leader election is

consisted of two parts. One is safety and the
other is liveness. To verify the correctness of
leader election algorithm, the algorithm should

be satisfied with both of safety and liveness

properties.

The safety requirement asserts that all the

nodes connected the system never disagree

on the leader when the nodes are in a state

of normal operation.

The liveness requirement asserts that all

the nodes should eventually progress to be in

a sate of normal operation in which all nodes

connected to the system agree to the only

one leader. Each node of system has a local

variable ldr indicating its leader. Since it is
impossible to make all nodes change their

local variable ldr simultaneously, each node
uses a variable status to reserve the status

of system during the process changing their

leader.

If status equals Norm, the node is normal

mode of operation and the value of ldr is
significant; if status has any other value, the

node is in a process of a new leader’s being

elected. We require those nodes to agree to a

leader only among nodes whose status is

Norm. We use subscripts to distinguish local

variables of different nodes; for example, ldri

and statusi are local variables for node i.

The safety property of the system with n

nodes is specified using those local variables.

At all times, for all operational nodes i and j,
if statusi = Norm and statusj = Norm, then

ldri = ldrj. Let’s specify the safety property

formally as a following formula Safety.

Safety :

∀ ≤ ≤ ∧

The liveness requires that the system

eventually progress to a stable state in which

the leader is operational and all operational

nodes are in the normal state in which they

have its status variable with Norm. Such a

state is characterized by using the predicate

ldrElected, defined as below.

Definition:

 ≡ ∀ ≤ ≤

∧

Repeated failure and disconnection of nodes

will prevent the system from entering the

stable state. If there is a period such that

there are no more failure and disconnection,

the liveness property with ldrElected means
that a state unsatisfied with ldrElected
eventually enter to the state satisfying

ldrElected. Let us define this formally as a
formula Liveness.

Liveness :

Liveness means that for a given system,

there exists a constant c such that if no

failures or disconnections occur for a period

of at least c, then by end of that period, the

system reaches a state satisfying ldrElected.
Furthermore, the system remains in that state

as long as no failures or disconnections

456 디지털콘텐츠학회 논문지 제11권 제4호 (2010. 12)

occur.

4. Design of Election Algorithm

4.1 Leader Election in Static
Networks

We first describe our election algorithm in

the environment of a static network, where

we assume that nodes and links never fail.

The algorithm consists of two phases

operated at the node that initiates the election

algorithm. 1) Member detection phase : it

operates by first “scattering the election

message” and then “gathering the id of each

node “ that is connected to the static

networks. 2) Decision and notifying phase :

after gathering the id of all members, the

source node decides the most‐valued node

and announces it as a new leader to all other

members. We refer to this computation‐

initiating node as the source node. As we

will see, after gathering all nodes’ ids

completely, the source node will have the

information enough to determine the most‐

valued‐node and will then broadcast its

identity to the rest of the nodes in the

network. The algorithm uses three messages,

i.e., Election, Ack and Leader.

1) Member Detection Phase. Election
messages are used to initiate the Election by
“scattering” the Election message. When

Election is triggered at a source node s (for
instance, upon crash or departure of its

current leader), the node makes a waiting list

wl and a received list rl and begins a

diffusing computation by sending an Election
message to all of its immediate neighbors.

Initially the waiting list consists of only its

immediate neighboring node’s ids and the

received list consists of an empty list. Every

node i other than the source propagates the

Election message to all of its neighboring

nodes except the node from which it first

received an Election message. When node i
receives an Election message from the

neighboring node for the first time, it

immediately sends the Ack message to the
source node. The Ack message sent by node
i to the source node contains the ids of all
its neighboring nodes that is needed for the

source node to elect a leader. When the

source node receives the Ack message from
the node j, it removes j from the waiting list
and puts j into the received list and

immediately checks one by one the every

node id contained in the Ack message. If

there is the any id in the Ack which has
already been acknowledged, i.e. that means it

is in the received list, it is discarded.

Otherwise, it is put into the waiting list of

source node and the source node waits the

Ack message from it. The waiting list is

growing and shrinking repeatedly based on

the received Ack messages, but the received
list steadily growing by receiving the Ack
messages. But eventually the waiting list

could be empty and the received list could

include all ids of nodes connected to the

networks when the source node received the

Ack messages from all other nodes. Hence

the source node eventually has sufficient

information to determine the most‐valued‐

node in the received list, because the waiting

list could be eventually empty and it means

that the source node has received the Ack
messages from all the nodes.

2) Decision and Notifying Phase. Once the

source node has received Acks from all other
nodes, it determines the most‐valued‐node

as a leader among the received list and

broadcasts a Leader message to all other

nodes announcing the identity of the leader.

모바일 애드 혹 분산 시스템에서 선출 알고리즘의 명세 및 설계 457

We illustrate a sample execution of the

algorithm. We describe the algorithm in a

somewhat synchronous manner even though

all the activities are in fact asynchronous.

Consider the network shown in Figure 1(a).

In this figure, and for the rest of the paper,

thin arrows indicate the direction of flow of

Election messages and dotted arrows indicate
the direction of flow of Ack messages to the
source node. The number adjacent to each

node in Figure 1(a) represents its value. As

shown in Figure 1, node A is a source node

that initializes wla and rlb with {B,C} and {A}

respectively and starts a diffusing

computation by sending out Election
messages (denoted as “E” in the figure) to

its immediate neighbors, viz. nodes B and C,

shown in Figure 1(a).

Figure 1: An execution of leader Election
algorithm based on the group membership

detection algorithm. Arrows on the edges

indicate transmitted election messages, while

dotted arrows parallel to the edges indicate

Ack messages.

As indicated in Figure 1(b), nodes B and C

in turn propagate the Election message to its
immediate neighbors only except the source

node and send the Ack message with

neighboring node list to the source node A.

Hence B and C also send Election messages

to one another. But the Election messages

are not acknowledged to the source node

since nodes B and C have already received

Election messages from the source node

respectively. The information about

neighboring node is piggybacked upon the

Ack message sent by each node. Upon

received Ack messages from B and C, node

A updates wla = { B,C }, rlb = { A } with

the neighboring node information piggybacked

on the Ack messages. In Figure 1(c), the

node D and F also send the Ack messages to
the sources node when they received the

Election messages from the B and C

respectively. Each of these Ack messages

contains the identities of the neighbor and its

actual value. Eventually, the source A hears

all acknowledgments from all of other nodes

except itself in Figure 1(d) and then decides

the most‐valued node among them and

broadcasts the identity of the leader, D, via

the Ldr message shown in Figure 1(d).

4.2 Leader Election in Ad Hoc
Networks

In this chapter, we redesign the leader

election algorithm presented above and

describe the operation of the leader election

algorithm in the context of a mobile, ad hoc

network. In the previous chapter, we

described the leader election algorithm LE in

a static network. But with the node mobility,

node crashes, link failures, network partitions

and merging of partitions, the simple LE

algorithm presented in the previous chapter is

inadequate. Furthermore, we assumed in the

previous chapter that only single node knows

as an external input the leader crash or

failure, departure and it initiates the election

protocol. In reality, such an assumption is

inadequate, because many nodes concurrently

can receive such inputs and each of them

458 디지털콘텐츠학회 논문지 제11권 제4호 (2010. 12)

1. numi := 0; ldri := null;
2. statusi : = Norm; one of states in

{Norm, Elect, Wait}
3. ni := {set of all neighboring

processes};
4. cli := { i }; wli := { };
5. e_num : = null; k : = null;

6. On statusi = Norm :

starts a leader election protocol independently.

It results from the lack of knowledge of other

computations that have been started by other

nodes.

We assume that the value of the node is

the same as its identifier. This assumption

has been made only for simplicity of

presentation without loss of generality. Before

we formally specify our algorithm and

describe it in detail, we briefly introduce

notation used in our algorithm specification

and the execution model.

we describe the exact algorithm performed

by an arbitrary node i. The exact algorithm

is shown in Figure 2. The Election module

on every node loops forever and on each

iteration checks if any of the actions in the

algorithm specification are enabled, executing

at least one enabled action on every loop

iteration. The bootstrapping of election

module involves assigning values variables in

line 1-5 of figure 2 as specified in the

initialization part of the Election module.

1) Initiate Election: The leader of a

connected component periodically sends a

heartbeat messages to other nodes. The

election process is triggered in node i when
it doesn’t receive the messages from the

leader due to its departure or crash, as

denoted by line 7‐8 in the algorithm of

Figure 2. As described in chapter 3, node i
starts the process of scattering an Election
message. That is it begins a diffusing

computation by sending an Election message
to all of its immediate neighbors, informing

them the starting of an election process for a

new leader. At triggering a new election,

node i sets its variable status to “Election”
to indicate that it is in the mode of an

election. In the election mode, node i waits
until it hears the Ack messages from all the
connected nodes to which it sends an election

message. The list wli is, therefore initialized

to Ni, i’s current neighbors. It is denoted in

line 16‐20 of Figure 2.

2) Detecting all Nodes connected Networks:

Node j, upon receiving an election message
from i, sends an Ack message piggybacked
with its neighbors id and weight to the node
i and propagates Election messages to its
own neighbors in the set nj. Node i, upon
receiving an Ack message from node j, puts
it into the set of confirmed node list cli and

inserts into the waiting list wli the

piggybacked neighbors which are in ni.

Therefore, node i knows that all nodes

connected to network are detected when the

cli is empty. It is denoted in line 22‐27 of

Figure 2.

3) Decide New Leader: When the waiting

list wli is empty, node i knows that it
received the Ack messages from all connected
nodes and it decides a new leader based on

the nodes weight among the set of confirmed

node list cli that consists of the

acknowledged nodes. The exact process to

decide new leader is described in line 20 and

28‐30 of Figure 2. As described in line 17‐

18 of Figure 2, after hearing all Ack

messages from the nodes in the waiting list

wli, node i announce the new leader to other
nodes and other nodes received the leader

messages from node i set its variable ldr to
the new leader’s id by which they know who

the current leader is.

모바일 애드 혹 분산 시스템에서 선출 알고리즘의 명세 및 설계 459

7. if no_signal from ldri then
8. statusi := Elect;
9. mumi := mumi +1;
10. send election(mumi) to each

process of ni; end‐if
11. Upon received election(m) from

process j:
12. statusi = Wait;
13. e_num : = m; k : = j;
14. send election(m) to each process

of ni except j:
15. send ack(ni) to processes j;

16. On statusi = Elect :
17. Upon received ack (q) from process

j :
18. wli : = wli – { j }
19. cli := cli∪{ j };
20. wli := wli∪{ q ‐ { q ∩ cli } }
21. if wli = empty then checklist(); end‐if
22. Upon received election(r) from

process j :
23. if { (mumi, i) < (r, j) } then
24. send election(r) to each process

of ni;
25. send ack(ni) to processes j;
26. e_num : = r; k : = j;
27. statusi := Wait; end‐if
28. On status = Wait :
29. Upon received leader(t) from process

j :
30. ldri := t ;
31. send leader(ldri) to each process

of
32. ni except j;
33. statusi := Norm;

34. Upon received election(r) from
process j :

35. if { (e_mum, k) < (r, j) } then
36. send election(r) to each process

of ni ;
37. send ack(ni) to processes j;
38. e_num : = r; k : = j;
39. end‐if
40. Checklist() :
41. ldri := max (cli)
42. send leader (ldri) to each process

of ni ;
43. statusi := Norm;
Figure 2: A leader election algorithm in

mobile ad hoc computing environments based

on the group membership detection algorithm.

4) Handling Node Partitions: Once node j
receives an Election messages from node i, it
must sends the Ack message to the node. But
because of node mobility, it may happen that

node j, which should yet report an Ack
message to node i, gets disconnected from it.
Node i must detect this event, since

otherwise it will never report an Ack
message to node i and therefore, no leader
will be elected. In this case, node i send an
Election message to the node j again and
wait an Ack message for a certain timeout
period. If node i does not received Ack
message from the node for those period, then

it removes the node from the list wli since

the node gets disconnected or crashes. It is

described at line 23‐26 and 34‐37 of Figure

2.

4.3 Proof of Correctness

Proof of Safety (Proof by contradiction).

Let’s assume following formula, which is the

case that there exist two nodes i, j on the
system whose states are Norm and have

different leaders. That is,

 ∧ ∧
 ∧ ∧≠

This formula is to be true, at least two

nodes in the systems, node i and j, should
have detected the leader’s failure or

disconnection and entered into the “Elect”

mode respectively when the leader had been

crashed or disconnected. Each of nodes i and
j should choose itself as a most‐valued node
respectively in order to declare itself as a

leader. But in each election round, only one

node has the most value and it would be

selected as a leader. Thus it is contradiction.

460 디지털콘텐츠학회 논문지 제11권 제4호 (2010. 12)

Proof of Liveness (By contradiction) a

non‐progress means that the new leader is

not elected forever even though there is no

leader; therefore, no leader messages must be

sent to all nodes. Let us assume that the

leader has failed. Because the number of

nodes is finite and at least one node is alive,

there must be at least one process that

detected the leader’s disconnection and started

the election procedure. Eventually the node

receives the Ack messages from all other

nodes and decides most‐valued node as a

new leader. Therefore, it is contradiction.

5. Concluding Remarks

We formally specified the property of our

leader election algorithm using temporal logic

and designed an asynchronous, distributed

leader election algorithm for mobile ad hoc

networks and showed it to be correct.

In the ad‐hoc network, topology is

dynamically changing and nodes are

frequently connected and disconnected over

the networks. Within this environment, the

leader election specification states that

progress and safety always cannot be

guaranteed. In practice, our requirement for

progress is that there exists a constant time

c such that if connection, disconnection or

failure does not occur for a period of at least

c, then by end of that period, the system

reaches a stable state satisfying a leader

elected. Furthermore, the system remains in

that state as long as no failures or

disconnections occur.

In fact, if the rate of perceived a leader

failures in the system is lower than the time

it takes the protocol to make progress and

accept a new leader, then it is possible for

the algorithm to make progress every time

there is a leader failure in the system [11,12].

In real distributed systems, where process

crashes actually lead a connected cluster of

processes to share the same connectivity

view of the network, convergence on a new

leader can be easily reached in practice.

However, the algorithm should work correctly

even in the case of unidirectional links,

provided that there is symmetric connectivity

between nodes. We are currently working on

the proof of correctness in the case of

unidirectional links. We are also investigating

on how our election algorithm can be adapted

to perform clustering in wireless, ad hoc

networks. Acknowledgment: This research

was financially supported by the Ministry of

Education, Science Technology and Korea

Industrial Technology Foundation through the

Human Resource Training Project for

Regional Innovation.

References

[1] G. LeLann, “Distributed systems–towards a

formal approach,” in Information Processing 77,

B. Gilchrist, Ed. North–Holland, 1977.

[2] H. Garcia‐Molian, “Elections in a distributed

computing system,” IEEE Transactions on

Computers, vol. C‐31, no. 1, pp. 49‐59, Han

1982.

[3] H. Abu‐Amara and J. Lokre, “Election in

asynchronous complete networks with

intermittent link failures.” IEEE Transactions on

Computers, vol. 43, no. 7, pp. 778‐788, 1994.

[4] H.M. Sayeed, M. Abu‐Amara, and H. Abu‐

Avara, “Optimal asynchronous agreement and

leader election algorithm for complete networks

with byzantine faulty links.,” Distributed

Computing, vol. 9, no. 3, pp. 147‐156, 1995.

[5] J. Brunekreef, J.‐P. Katoen, R. Koymans, and

S. Mauw, “Design and analysis of dynamic

leader election protocols in broadcast networks,”

Distributed Computing, vol. 9, no. 4, pp. 157‐

171, 1996.

[6] G. Singh, “Leader election in the presence of

link failures,” IEEE Transactions on Parallel

and Distributed Systems, vol. 7, no. 3, pp. 231

‐236, March 1996.

모바일 애드 혹 분산 시스템에서 선출 알고리즘의 명세 및 설계 461

박 성 훈
1982년 2월 : 고려대학교

정경대학 (경제학사)

1993년 12월 : 인디애나대학교

컴퓨터학과 (공학석사)

2000년 12월 : 고려대학교

컴퓨터공학과 (공학박사)

2010년～현 재 : 충북대학교 전자정보대학

컴퓨터공학부 교수

<관심분야> : 분산/모바일/유비쿼터스

컴퓨팅, 정형기법이론, 계산이론

[7] David Powell, guest editor. "Special section on

group communication." Communications of the

ACM, 39(4):50‐97, April 1996.

[8] Pradhan D. K., Krichna P. and Vaidya N. H.,

"Recoverable mobile environments: Design and

tradeoff analysis." FTCS‐26, June 1996.

[9] N. Malpani, J. Welch and N. Vaidya. "Leader

Election Algorithms for Mobile Ad Hoc

Networks." In Fourth International Workshop

on Discrete Algorithms and Methods for

Mobile Computing and Communications, Boston,

MA, August 2000.

[10] K. Hatzis, G. Pentaris, P. Spirakis, V.

Tampakas and R. "Tan. Fundamental Control

Algorithms in Mobile Networks." In Proc. of

11th ACM SPAA, pages 251‐260, March 1999.

[11] C. Lin and M. Gerla. "Adaptive Clustering for

Mobile Wireless Networks." In IEEE Journal

on Selected Areas in Communications,

15(7):1265‐75, 1997.

[12] P. Basu, N. Khan and T. Little. "A Mobility

based metric for clustering in mobile ad hoc

networks." In International Workshop on

Wireless Networks and Mobile Computing,

April 2001.

