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Design and Specification of an Election Algorithm in Mobile
Ad Hoc Distributed Systems

Sung-Hoon Park*

Abstract

Specifying and designing the election algorithm in mobile ad hoc distributed systems is very
difficult task. It is because mobile ad hoc systems are more prone to failures than conventional
distributed systems. The aim of this paper is to propose a specification and design of the election
algorithm in a specific ad hoc mobile computing environment. For this aim, we specify and design
an election algorithm in this paper. In addition, we formally verify it and show that it is correct.
This solution is based on the nodes detection algorithm that is a classical one for synchronous
distributed systems.

Keywords: Synchronous Distributed Systems, Leader Election, Fault Tolerance, Mobile Ad Hoc
Environment.

[2,3,45,6,7]. One reason for this wide interest
is that many distributed protocols need an

1. Introduction

. . election protocol. However, despite its
The Election problem [1] requires that a .
usefulness, to our knowledge there is no

unique coordinator be elected from a given .
d & work that has been devoted to this problem

set of processes. The problem has been . . . .
in a mobile ad hoc computing environment.

widely studied in the research community . .
In mobile ad hoc environments, nodes are

mobile, topologies can change and nodes may
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making it a particularly critical component of
system operation. Mobile ad hoc systems are

Hetn SR AAY more  often subject  to environmental
= adversities which can cause loss of messages
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or data [8]. In particular, a mobile node can
fail or disconnect from the rest of the
network. Specifying and designing fault

distributed
applications in such an environment is very

tolerant algorithms and

complex endeavor.

The aim of this paper is to propose a
specification and design of the election
algorithm in a specific ad hoc mobile
computing environment. This solution 1is
based on the nodes detection algorithm that
is a classical one for synchronous distributed
systems. The rest of this paper is organized
as follows: chapter 2 describes the mobile
system model we use. In chapter 3, a
specification to the election problem in a
conventional synchronous system is presented.
A protocol to solve the election problem in a
mobile ad hoc computing system is presented
in chapter 4. We conclude in chapter 5.

2. Mobile System Model and
Assumptions

We model it as asynchronous computation
with failure detection which is the one
described in [9,10]. In the following, we only
recall some informal definitions and results
that are needed in this paper. Before
designing a leader election algorithm for ad
hoc computing environments, we first define
our system model based upon assumptions
and goals. We model an ad hoc network as
an undirected graph, ie, G = (V,E) where
vertices V' correspond to set of mobile nodes
{1,2,....,n} (n>1) with unique identifiers and
edges E between a pair of nodes represent
the fact that the two nodes are within each
other’'s transmission radii and, hence, can
directly communicate with one another that
changes over time as nodes move.

Each process i has a variable N;, which
indicates the neighboring nodes, with that i
can directly communicate the neighboring
nodes. We assume that every communication
channel is bidirectional; ;; j& N; iff i€ N;
More precisely, in the network G = (V,E),
we can define E such that for all i€V, (i)
& FE if and only if i N, The graph can
become disconnected if the network is
partitioned due to node movement. Because
the nodes may changes their location, N;
may be dynamically changed and so may G
accordingly. We make the following
assumptions about the nodes and system
architecture. Fach node has a weight value
W; associated with it. The value of a node
indicates its “priority” as a leader of the
system and can be calculated upon some
criteria such as the node’s battery power, the
position where the node’s distance from other
nodes 1s minimal, computational capabilities
etc. All nodes have unique identifiers. They
are used to identify participants during the
election process. Node identifiers IDs are used
to break ties among nodes which have the
same value.

Links are bidirectional and First In First
Out FIFO, ie. messages are delivered in
order over a link between two neighbors.
Node mobility may result in arbitrary
topology changes including network
partitioning and merging. Furthermore, nodes
can crash arbitrarily at any time and can
come back up again at any time. A message
delivery is guaranteed only when the sender
and the receiver remain connected (not
partitioned) for the entire duration of message
transfer. Each node has a sufficiently large
receive buffer to avoid buffer overflow at any

point in its lifetime.

The objective of our leader election
algorithm is to ensure that after a finite
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number of topology changes, eventually each

node i has a leader which is the most
valued node from among all nodes in the

connected component to which i belongs.

3. Specification of Election
Algorithm

In this chapter, we specify a leader election
algorithm. In later chapters, we will design

our election algorithm based on this
specification.
The specification for leader election 1is

consisted of two parts. One is safety and the
other is liveness. To verify the correctness of
leader election algorithm, the algorithm should
be satisfied with both of safety and liveness

properties.

The safety requirement asserts that all the
nodes connected the system never disagree
on the leader when the nodes are in a state
of normal operation.

The liveness requirement asserts that all
the nodes should eventually progress to be in
a sate of normal operation in which all nodes
connected to the system agree to the only
one leader. Each node of system has a local
variable Ildr indicating its leader. Since it is
impossible to make all nodes change their
local variable Idr simultaneously, each node
uses a variable status to reserve the status
of system during the process changing their
leader.

If status equals Norm, the node is normal
mode of operation and the value of Ildr is
significant; if status has any other value, the
node is in a process of a new leader’s being
elected. We require those nodes to agree to a
leader only among nodes whose status is
Norm. We use subscripts to distinguish local
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variables of different nodes; for example, Ildr;

and statusi are local variables for node i.

The safety property of the system with n
nodes is specified using those local variables.
At all times, for all operational nodes i and j,
if status; = Norm and status; = Norm, then
Idri = ldrj. Let's specify the safety property

formally as a following formula Safety.

Safety :
Voi,j: 1< 4,5 < n: (status; = Norm A
status; = Norm )=> (ldriz ldrs]-))

The
eventually progress to a stable state in which

liveness requires that the system
the leader is operational and all operational
nodes are in the normal state in which they
have its status variable with Norm. Such a
state is characterized by using the predicate

ldrElected, defined as below.

Definition:
ldrElected = (Vi : 1<i < n:ldr;=j
A (status, = Norm)))

Repeated failure and disconnection of nodes
will prevent the system from entering the
stable state. If there is a period such that
there are no more failure and disconnection,
the liveness property with ldrElected means
that ldrElected
eventually satisfying

unsatisfied with
to the
ldrElected. Let us define this formally as a

a state

enter state

formula Liveness.

Liveness :
=ldrElected => eventually ldrElected

Liveness means that for a given system,
there exists a constant ¢ such that if no
failures or disconnections occur for a period
of at least c, then by end of that period, the
system reaches a state satisfying IldrElected.
Furthermore, the system remains in that state

as long as no failures or disconnections
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occur.

4. Design of Election Algorithm

4.1 Leader
Networks

Election in  Static

We first describe our election algorithm in
the environment of a static network, where
we assume that nodes and links never fail.
The algorithm
operated at the node that initiates the election

consists of two phases
algorithm. 1) Member detection phase : it
operates by first “scattering the election
message” and then “gathering the id of each

“

node that is connected to the static
networks. 2) Decision and notifying phase :
after gathering the id of all members, the
source node decides the most valued node
and announces it as a new leader to all other
members. We refer to this computation

initiating node as the source node. As we
will see, after gathering all nodes ids
completely, the source node will have the
information enough to determine the most

valued node and will then broadcast its
identity to the rest of the nodes in the
network. The algorithm uses three messages,

i.e., Election, Ack and Leader.

1) Member Phase. Election
messages are used to initiate the Election by
When

Election is triggered at a source node s (for

Detection

“scattering” the FElection message.

instance, upon crash or departure of its
current leader), the node makes a waiting list
wl and a received list rl and begins a
diffusing computation by sending an Election
message to all of its immediate neighbors.
Initially the waiting list consists of only its
immediate neighboring node’s ids and the
received list consists of an empty list. Every

node i other than the source propagates the

Election message to all of its neighboring
nodes except the node from which it first
received an Election message. When node i
receives an FElection message from the
neighboring node for the first time, it
immediately sends the Ack message to the
source node. The Ack message sent by node
i to the source node contains the ids of all
its neighboring nodes that is needed for the
source node to elect a leader. When the
source node receives the Ack message from
the node j, it removes j from the waiting list
and puts j into the received list and
immediately checks one by one the every
node id contained in the Ack message. If
there is the any id in the Ack which has
already been acknowledged, i.e. that means it
is in the received list, it 1is discarded.
Otherwise, it is put into the waiting list of
source node and the source node waits the
Ack message from it. The waiting list is
growing and shrinking repeatedly based on
the received Ack messages, but the received
list steadily growing by receiving the Ack
messages. But eventually the waiting list
could be empty and the received list could
include all ids of nodes connected to the
networks when the source node received the
Ack messages from all other nodes. Hence
the source node eventually has sufficient
information to determine the most valued
node in the received list, because the waiting
list could be eventually empty and it means
that the source node has received the Ack
messages from all the nodes.

2) Decision and Notifying Phase. Once the
source node has received Acks from all other
nodes, it determines the most valued node
as a leader among the received list and
broadcasts a Leader message to all other

nodes announcing the identity of the leader.
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We
algorithm. We describe the algorithm

illustrate a sample execution of the
in a
somewhat synchronous manner even though
all the activities are in fact asynchronous.
Consider the network shown in Figure 1(a).
In this figure, and for the rest of the paper,
thin arrows indicate the direction of flow of
Election messages and dotted arrows indicate
the direction of flow of Ack messages to the
source node. The number adjacent to each
node in Figure 1(a) represents its value. As
shown in Figure 1, node A is a source node
that initializes wl, and rl, with {B,C} and {A}
and
by

messages (denoted as “E” in the figure) to

respectively starts a diffusing

computation sending out Election

its immediate neighbors, viz. nodes B and C,
shown in Figure 1(a).

wi, = {B, C},11,~{A}

wl,= {D, F}, rl,={AB.C}

“Ack(AD.C)" v® Y. “Ack(AB.F)"

wl, = {D. F}, 1l,={AB.C}

Ldn(D, ®\‘Ld.rfD)
e j®

(d)

Figure 1: An execution of leader Election

algorithm based on the group membership
detection algorithm. Arrows on the edges
indicate transmitted election messages, while
dotted arrows parallel to the edges indicate

Ack messages.

As indicated in Figure 1(b), nodes B and C
in turn propagate the Election message to its
immediate neighbors only except the source
the with
neighboring node list to the source node A.

node and send Ack message

Hence B and C also send Election messages

B
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to one another. But the Election messages
are not acknowledged to the source node
since nodes B and C have already received
Election messages from the source node
The

is piggybacked upon the

respectively. information about
neighboring node
Ack message sent by each node. Upon
received Ack messages from B and C, node
A updates wl, = { BC }, vl = { A } with

the neighboring node information piggybacked

on the Ack messages. In Figure 1(c), the
node D and F also send the Ack messages to
the sources node when they received the
the B and C

respectively. Each of these Ack messages

FElection messages from

contains the identities of the neighbor and its
actual value. Eventually, the source A hears
all acknowledgments from all of other nodes
except itself in Figure 1(d) and then decides
the most valued node among them and
broadcasts the identity of the leader, D, via

the Ldr message shown in Figure 1(d).

4.2 Leader in Ad Hoc

Electi
Networks ection

In this chapter, we redesign the leader

election algorithm presented above and
describe the operation of the leader election
algorithm in the context of a mobile, ad hoc
the

described the leader election algorithm LE in

network. In previous chapter, we

a static network. But with the node mobility,
node crashes, link failures, network partitions
the simple LE
algorithm presented in the previous chapter is

and merging of partitions,

inadequate. Furthermore, we assumed in the
previous chapter that only single node knows
as an external input the leader crash or
failure, departure and it initiates the election
protocol. In reality, such an assumption is
inadequate, because many nodes concurrently

can receive such inputs and each of them
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starts a leader election protocol independently.
It results from the lack of knowledge of other
computations that have been started by other
nodes.

We assume that the value of the node is
the same as its identifier. This assumption
has been made only for simplicity of
presentation without loss of generality. Before
we formally specify our algorithm and
describe it in detail, we briefly introduce
notation used in our algorithm specification
and the execution model.

we describe the exact algorithm performed
by an arbitrary node i. The exact algorithm
is shown in Figure 2. The Election module
on every node loops forever and on each
iteration checks if any of the actions in the
algorithm specification are enabled, executing
at least one enabled action on every loop
iteration. The bootstrapping of election
module involves assigning values variables in
line 1-5 of figure 2 as specified in the

initialization part of the Election module.

1) Initiate Election: The leader of a
connected component periodically sends a
heartbeat messages to other nodes. The
election process is triggered in node i when
it doesn't receive the messages from the
leader due to its departure or crash, as
denoted by line 7 8 in the algorithm of
Figure 2. As described in chapter 3, node i
starts the process of scattering an FElection
message. That is it begins a diffusing
computation by sending an FElection message
to all of its immediate neighbors, informing
them the starting of an election process for a
new leader. At triggering a new election,
node i sets its variable status to “Election”
to indicate that it is in the mode of an
election. In the election mode, node i waits
until it hears the Ack messages from all the

connected nodes to which it sends an election

message. The list wl; is, therefore initialized
to N, 1's current neighbors. It is denoted in
line 16 20 of Figure 2.

2) Detecting all Nodes connected Networks:
Node j, upon receiving an election message
from i, sends an Ack message piggybacked
with its neighbors id and weight to the node
i and propagates Election messages to its
own neighbors in the set n;. Node i, upon
receiving an Ack message from node j, puts
it into the set of confirmed node list ¢/; and
inserts into the waiting list wl; the
piggybacked neighbors which are in n;
Therefore, node i knows that all nodes
connected to network are detected when the
cl; is empty. It is denoted in line 22 27 of
Figure 2.

3) Decide New Leader: When the waiting
list wl; is empty, node i knows that it
received the Ack messages from all connected
nodes and it decides a new leader based on
the nodes weight among the set of confirmed
node list «¢l; that

acknowledged nodes. The exact process to

consists of  the

decide new leader is described in line 20 and
28 30 of Figure 2. As described in line 17
18 of Figure 2, after hearing all Ack
messages from the nodes in the waiting list
wl;, node i announce the new leader to other
nodes and other nodes received the leader
messages from node i set its variable Idr to
the new leader’s id by which they know who
the current leader is.

1.  num; = 0; ldr; = null;

2.  status; : = Norm; one of states in
{Norm, Elect, Wait}

3. m = {set of all neighboring
processes};

4. ci={i}; who={};

5. enum :=null; k:= null

6. On status; = Norm :
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13.
14.

15.

16.
17.

18.
19.
20.
21.
22,

23.
24.

25.
26.
27.

28.
29.

30.
31.

32.

33.

34.

35.
36.

37.
38.
39.

40.
41.
42.

43.

if no signal from /dr; then
status; = Elect;
mum; = mum; +1;
send election(mum;) to each
process of n;; end-if
Upon received election(m) from
process j:
status; = Wait;
e num : =m; k : = j
send election(m) to each process
of n; except j:
send ack(n;) to processes j;

On status; = Elect :
Upon received ack (g) from process

j:
Wl,'Z:Wl,'—{j}
cli = CZ[U{ j };
wlhi =wliU{qg-{qNcl} }
if wl; = empty then checklist(); end-if
Upon received election(r) from
process j :
if { (mum;, i) < (r, j) } then
send election(r) to each process
of n;;

send ack(n;) to processes j;
enum :=r, k:=j
status; = Wait; end-if

On status = Wait :
Upon received leader(f) from process

Jj:
ldr; =t ;
send /eader(ldr;) to each process
of
n; except j;
status; = Norm;
Upon received election(r) from
process j @
if { (e_mum, k) < (r, j) } then
send election(r) to each process
of n; ;
send ack(n;) to processes j;
enum :=r k:=j
end-if
Checklist() :

ldr; == max (cl))

send leader (ldr; ) to each process
of n; ;

status; = Norm;

Figure 2: A leader election algorithm in
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mobile ad hoc computing environments based
on the group membership detection algorithm.

4) Handling Node Partitions: Once node j
receives an Election messages from node i, it
must sends the Ack message to the node. But
because of node mobility, it may happen that

node j, which should yet report an Ack
message to node i, gets disconnected from it.
Node i must detect this event, since
otherwise it will never report an Ack

message to node i and therefore, no leader
will be elected. In this case, node i send an
Election message to the node j again and
wait an Ack message for a certain timeout
If node i
message from the node for those period, then

period. does not received Ack
it removes the node from the list wli since
the node gets disconnected or crashes. It is
described at line 23 26 and 34 37 of Figure
2.

4.3 Proof of Correctness

Proof of Safety (Proof by contradiction).
Let’s assume following formula, which is the
case that there exist two nodes i, j on the
system whose states are Norm and have
different leaders. That is,

(Statusi = Norm A Statusj = Norm) A
(ldr,; =N ldr]- Zj)/\ (1 = j)

This formula is to be true, at least two
nodes in the systems, node i and j, should
detected  the
disconnection and entered

leader’'s  failure or
into the “Elect”
mode respectively when the leader had been

have

crashed or disconnected. Each of nodes i and
J should choose itself as a most valued node
respectively in order to declare itself as a
leader. But in each election round, only one
node has the most value and it would be

selected as a leader. Thus it is contradiction.
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Proof of Liveness (By contradiction) a
non progress means that the new leader is
not elected forever even though there is no
leader; therefore, no leader messages must be
sent to all nodes. Let us assume that the
leader has failed. Because the number of
nodes is finite and at least one node is alive,
there must be at least one process that
detected the leader’s disconnection and started
the election procedure. Eventually the node
receives the Ack messages from all other
nodes and decides most valued node as a
new leader. Therefore, it is contradiction.

5. Concluding Remarks

We formally specified the property of our
leader election algorithm using temporal logic
and designed an asynchronous, distributed
leader election algorithm for mobile ad hoc
networks and showed it to be correct.

In the ad hoc network, topology is
dynamically  changing and nodes are
frequently connected and disconnected over
the networks. Within this environment, the
leader election specification states that
progress and safety always cannot be
guaranteed. In practice, our requirement for
progress is that there exists a constant time
¢ such that if connection, disconnection or
failure does not occur for a period of at least
¢, then by end of that period, the system
reaches a stable state satisfying a leader
elected. Furthermore, the system remains in
that state as long as no failures or

disconnections occur.

In fact, if the rate of perceived a leader
failures in the system is lower than the time
it takes the protocol to make progress and
accept a new leader, then it is possible for
the algorithm to make progress every time
there is a leader failure in the system [11,12].

In real distributed systems, where process
crashes actually lead a connected cluster of

processes to share the same connectivity
view of the network, convergence on a new
leader can be easily reached in practice.
However, the algorithm should work correctly
even in the case of unidirectional links,
provided that there is symmetric connectivity
between nodes. We are currently working on
the proof of correctness in the case of
unidirectional links. We are also investigating
on how our election algorithm can be adapted
to perform clustering in wireless, ad hoc
networks. Acknowledgment: This research
was financially supported by the Ministry of
Education, Science Technology and Korea
Industrial Technology Foundation through the

Human  Resource Training Project for
Regional Innovation.
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