DOI QR코드

DOI QR Code

Nanostructured Bulk Ceramics (Part IV. Polymer Precursor Derived Nanoceramics)

  • Han, Young-Hwan (School of Materials Science and Engineering, Yeungnam University) ;
  • Mukherjee, Amiya K. (University of California, Chemical Engineering & Materials Science, One Shields Avenue)
  • 투고 : 2010.02.19
  • 심사 : 2010.03.09
  • 발행 : 2010.05.31

초록

In the last (fourth) section, the discussion will entail a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method.

키워드

참고문헌

  1. J. Wan, M.J. Gasch, and A.K. Mukherjee, “Silicon Carbonitride Ceramics Produced by Pyrolysis of Polymer Ceramic Precursor,” J. Mater. Res., 15 1657-60 (2000). https://doi.org/10.1557/JMR.2000.0238
  2. J. Wan, R.-G. Duan, M. J. Gasch, and A.K. Mukherjee, “Highly Creep-Resistant Silicon Nitride/Silicon Carbide Nano–Nano Composites,” J. Am. Ceram. Soc., 89 274-80 (2006). https://doi.org/10.1111/j.1551-2916.2005.00702.x
  3. J. Crampon, R. Duclos, and N. Rakotoharisoa, “Creep Behaviour of $Si_3N_4/Y_2O_3/Al_2O_3/AlN$ Alloys,” J. Mater. Sci., 28 909-16 (1993). https://doi.org/10.1007/BF00400873
  4. J. Crampon, R. Duclos, and N. Rakotoharisoa, “Compression Creep of $Si_3N_4/MgAl_2O_4$ Alloys,” J. Mater. Sci., 25 1203-08 (1990). https://doi.org/10.1007/BF00585425
  5. S.Y. Yoon, T. Akatsu, and E. Yasuda, “Anisotropy of Creep Deformation Rate in Hot-Pressed $Si_3N_4$ with Preferred Orientation of the Elongated Grains,” J. Mater. Sci., 32 3813-19 (1997). https://doi.org/10.1023/A:1018631924934
  6. R.D. Nixon, D.A. Koester, S. Chevacharoenkul, and R.F. Davis, “Steady-State Creep of Hot-Pressed SiC Whisker- Reinforced Silicon Nitride,” Composites Science and Technology, 37 313-28 (1990). https://doi.org/10.1016/0266-3538(90)90107-G
  7. J.-L. Besson, M. Mayne, D. Bahloul-Hourlier, and P. Goursat, “$Si_3N_4$/SiCN Nanocomposites: Influence of SiC Nanoprecipitates on the Creep Behaviour,” J. Europ. Ceram. Soc., 18 1893-904 (1998). https://doi.org/10.1016/S0955-2219(98)00128-9
  8. F.F. Lange and B.I. Davis, “Compression Creep of $Si_3N_4$/MgO Alloys,” J. Mater. Sci., 17 3637-40 (1982). https://doi.org/10.1007/BF00752208
  9. P.J. Whalen, C. Gasdaska, and R.D. Silvers, “The Effect of Microstructure on the High Temperature Deformation Behavior of Sintered Silicon Nitride,” Ceram. Eng. Sci. Proc., 11 633-49 (1990). https://doi.org/10.1002/9780470313008.ch11
  10. A.A. Wereszczak, M.K. Ferber, T.P. Kirkland, A.S. Barnes, E.L. Frome, and M.N. Menon, “Asymmetric Tensile and Compressive Creep Deformation of Hot-Isostatically-Pressed $Y_2O_3$-Doped- $Si_3N_4$,” J. Europ. Ceram. Soc., 19 227-37 (1999). https://doi.org/10.1016/S0955-2219(98)00184-8
  11. G. Bernard-Granger, J. Crampon, R. Duclos, and B. Cales, “High Temperature Creep Behaviors of ${\beta}'-Si_3N_4/{\alpha}$-YSiAlON Ceramics,” J. Europ. Ceram. Soc., 17 1647-54 (1997). https://doi.org/10.1016/S0955-2219(97)00008-3
  12. F.F. Lange, B.I. Davis, and H.C. Graham, “Compressive Creep and Oxidation Resistance of an ESi_3N_4$ Material Fabricated in the System $Si_3N_4–Si_2N_2O–Y_2Si_2O_7$,” J. Am. Ceram. Soc., 66 C98-C99 (1983).
  13. M. Backhaus-Ricoult, P. Eveno, J. Castaing, H.J. Kleebe, in: Plastic Deformation of Ceramics, High-Temperature Creep Behavior of High Purity Hot-Pressed Silicon Nitride p.555, R. C. Bradt, C. A. Brookes and J. L. Routbort (Eds.), Kluwer Academic Pub (1995).
  14. K. Ramoul-Badache and M. Lancin, “$Si_3N_4$–SiC Particulate Composites: Devitrification of the Intergranular Phase and Its Effect on Creep,” J. Europ. Ceram. Soc., 10 369-79 (1992). https://doi.org/10.1016/0955-2219(92)90011-2
  15. S.Y. Yoon, T. Akatsu, and E. Yasuda, “The Microstructure and Creep Deformation of Hot-Pressed Si3N4 with Different Amounts of Sintering Additives,” J. Mater. Sci., 32 120-26 (1996).
  16. F.F. Lange, B.I. Davis, and D.R. Clarke, “Compression Creep of $Si_3N_4$/MgO Alloys, Part 1, Effect of Composition,” J. Mater. Sci., 15 601-10 (1980). https://doi.org/10.1007/BF00551722
  17. M.S. Seltzer, “High Temperature Creep of Silicon-Based Compounds,” Am. Ceram. Soc. Bull., 56 418-23 (1977).
  18. R. Raj, “Creep in Polycrystalline Aggregates by Matter Transport Through a Liquid Phase,” J. Geophysical Res., 87 4731-39 (1982). https://doi.org/10.1029/JB087iB06p04731
  19. F. Wakai, “Step Model of Solution-Precipitation Creep,” Acta Metall. Mater., 42 1163-72 (1994). https://doi.org/10.1016/0956-7151(94)90133-3
  20. A.K. Mukherjee, J. E. Bird, and J. E. Dorn, “Experimental Correlations for High-Temperature Creep,” ASM Trans., 62 155-79 (1969).
  21. B.-N. Kim, K. Hiraga, K. Morita, and Y. Sakka, “A High-Strain-Rate Superplastic Ceramic,” Nature, 413 288-91 (2001). https://doi.org/10.1038/35095025
  22. F. Wakai, S. Sakaguchi, and Y. Matsuno, “Superplasticity of Yttria-Stabilized Tetragonal $ZrO_2$ Polycrystals,” Adv. Ceram. Mater., 1 259-63 (1986). https://doi.org/10.1111/j.1551-2916.1986.tb00026.x
  23. A.K. Mukherjee, J. E. Bird, and J. E. Dorn, “Experimental Correlations for High-Temperature Creep,” ASM Trans., 62 155-79 (1969).