DOI QR코드

DOI QR Code

Alternatives Development for Basin-wide Flood Mitigation Planning by Determining Economic Optimal Project Size

최적사업규모 결정을 통한 유역치수계획의 대안수립 방안

  • 이충성 (한국수자원공사 기술지원센터) ;
  • 심명필 (인하대학교 사회기반시스템공학부) ;
  • 이상원 (인하대학교 경제학부)
  • Received : 2009.11.24
  • Accepted : 2010.04.14
  • Published : 2010.05.31

Abstract

The integrated basin-wide flood mitigation planning has a numerous individual proposals with different characteristics. So, it makes difficult to develop the optimal alternative that combines such elements. To develop the optimal alternative, it's necessary not only to assess the flood damage but also to define a tolerable degree of damage. Such a definition is made in a way, dubbed the 'social consensus' in a broad sense; but initially, it requires the analysis of the economic efficiency within a scope, which is technically achievable. This study aims to propose the alternatives development method so that the combination of the individual proposals could be economically efficient. To this end, this study defined the flood mitigation projects as the economic production activities carried out by inputs and outputs, and proposed the optimal project size as the principle of developing alternatives. This study may have the worth in improving the alternatives development method by considering the optimal project scale from the economic viewpoint while the existing method depending on engineering aspect. Such approach is expected to correspond to the current government's policy that avoids the passive flood mitigation focused on channel-wide planning but pursues the basin-wide flood mitigation planning focusing on damaged area, thereby provide efficient tools to come up with the solution.

유역단위의 통합적 치수계획은 고려되는 단위사업의 수가 많고 그 특성도 다양하므로 이들을 조합한 최적의 대안을 수립하기가 쉽지 않다. 최적의 대안수립을 위해서는 홍수피해를 산정하는 것뿐만 아니라 감내할 수 있는 피해의 수준을 결정해야만 한다. 이에 대한 결정은 큰 틀에서 '사회적 합의'라는 방식으로 도출되지만 일차적으로는 기술적으로 가능한 범주에서 경제적 효율성 측면의 분석을 필요로 한다. 본 연구의 목적은 각 단위사업들의 조합이 경제적 효율성을 갖도록 하는 대안수립 방법을 제시하는 것이다. 이를 위해서 치수사업을 투입과 산출에 의한 경제학적 생산활동으로 정의하고 최적사업규모를 대안수립의 원칙으로 제시하였다. 본 연구는 기존에 공학적 측면에만 의존하던 대안수립 방법을 개선하여 경제적 측면에서 최적사업규모를 고려하였다는 데에 의의가 있다. 이러한 대안수립 방법은 하천중심의 소극적 치수계획을 지양하고 피해지역 중심의 유역단위 치수계획 수립으로 전환되고 있는 최근의 정부정책 방향에도 부합하며, 정책수립을 위한 효과적인 수단을 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. 이충성, 최승안, 심명필, 정관수(2004). "가중치산정을 통한 다목적댐 용수의 배분 방안." 한국수자원학회논문집, 한국수자원학회, 제37권, 제8호, pp. 663-674. https://doi.org/10.3741/JKWRA.2004.37.8.663
  2. 이충성, 최승안, 심명필, 김형수(2005). "치수사업을 위한 다기준의사결정모형 개발: 2. 최선대안 선정 및 투자우선순위 결정." 대한토목학회논문집, 대한토목학회, 제 25권, 제5B호, pp. 347-354.
  3. 이충성, 박교, 최승안, 심명필(2006). "피해함수 산정을 통한 물 부족 상황에서의 용수배분 방안." 한국수자원학회논문집, 한국수자원학회, 제39권, 제5호, pp. 431- 440. https://doi.org/10.3741/JKWRA.2006.39.5.431
  4. 이충성(2007). 유역치수계획 최적대안 결정을 위한 의사 결정모형의 개발. 박사학위논문, 인하대학교, pp. 60- 66.
  5. 조순, 정운찬(1993). 경제학원론. 법문사.
  6. Asbeck, E., and Haimes, Y.Y. (1984). "The partitioned multiobjective risk method." Lage Scale Systms, Vol. 6, No. 1, pp. 13-38.
  7. Haimes, Y.Y., and Hall, W.A. (1974). "Multiobjectives in water resources systems analysis: The Surrogate Worth Trade-off method." Water Resources Research, AGU, Vol. 10, No. 4, pp. 615-624. https://doi.org/10.1029/WR010i004p00615
  8. Haimes, Y.Y., Lambert, J.H., and Li, D. (1992). "Risk of extreme events in a multiobjective framework." Water Resources Bulletin, Vol. 28, No. 1, pp. 201-209. https://doi.org/10.1111/j.1752-1688.1992.tb03165.x
  9. Haimes, Y.Y., Li, D., Karlsson, P., and Mitsiopoulos, J. (1990). "Extream events: Risk management." System and Control Encylopedia, M.G., Singh, editor, Supplementary, Vol. 1, Pergamon Press, Oxford.
  10. Haimes, Y.Y., Petrakian, R., Karlsson, P.O., and Mitsiopoulos, J. (1988). Multi-objective risk- partitioning: An application to dam safety risk analysis. IWR Report 88-R-4, USACE, Water Resorces Support Center, Fort Belvoir, Virginia.
  11. Heaney, J.M., Nix, S.J., and Murphy, M.P. (1978). "Storage-treatment mixes of stormwater control." Journal of Environmental Engineering, ASCE, Vol. 104, No. EE4, pp. 581-592.
  12. James, L.D., and Lee, R.R. (1971). Economics of water resuources planning. McGraw-Hill Inc., New York.
  13. Karlsson, P.O., and Haimes Y.Y. (1988a). "Probability distributions and their partitioning."Water Resources Research, AGU, Vol. 24, No. 1, pp. 21-29. https://doi.org/10.1029/WR024i001p00021
  14. Karlsson, P.O., and Haimes, Y.Y. (1988b). "Risk-based analysis of extreme events." Water Resources Research, AGU, Vol. 24, No. 1, pp. 9-20. https://doi.org/10.1029/WR024i001p00009
  15. Karlsson, P.O., and Haimes, Y.Y. (1989). "Risk assessment of extreme events: Application." Journal of Water Resources Planning and Management, ASCE, Vol. 115, No. 3, pp. 299-320. https://doi.org/10.1061/(ASCE)0733-9496(1989)115:3(299)
  16. Kuhn, H.W., and Tucker, A.W. (1950). "Nonlinear programming." Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, pp. 481-492.
  17. McKinney, D.C., and Savitsky, A.G. (2006). "Basic Optimization Models for Water and Energy Management.", The University of Texas at Austin technical Report.
  18. Mitsiopoulos, J., Haimes, Y.Y., and Li, D. (1991). "Approximating catastrophic risk through statistics of extremes." Water Resources Research, AGU, Vol. 27, No. 6, pp. 1223-1230. https://doi.org/10.1029/91WR00333
  19. Moglen, G.E., and McCuen, R.H. (1990). "Economic framework for flood and sediment control with detention basins." Water Resources Bulletin, Vol. 26, No. 1, pp. 145-156. https://doi.org/10.1111/j.1752-1688.1990.tb01359.x
  20. Petrakian, R., Haimes, Y.Y., Stakhiv, E.Z., and Moser, D.A. (1989). "Risk analysis of dam failure and extreme floods." Risk Analysis and Management of Natural and Man-Made Hazards, Y.Y. Haimes and E.Z. Stahkiv, editors, ASCE, New York.
  21. Ringler, C. (2001). Optimal allocation and use of water resources in the mekong river basin: Multi-country and intersectoral analyses. Peter Lang., Germany, pp. 5-14.
  22. Rosegrant, M.W., Ringler, C., McKinney, D.C., Cai, X., Keller, A., and Donoso, G. (2000). "Integrated economichydrologic water modeling at the basin scale: The maipo river basin." Agricultural Economics, IAAE, Vol. 24, No. 1, pp. 33-46.
  23. Schefter, J.E., Hirsh, R.M., and JamesII, I.C. (1978). Natural resources economics course notes. Water Resources Division, U.S. Geological Survey.
  24. Thompson, K.D., Stedinger, J.R., and Heath, D.C. (1997). "Evaluation and presentation of dam failure and flood risks." Journal ofWater Resources Planning and Management, ASCE, Vol. 123, No. 4, pp. 216-227. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:4(216)
  25. Thuesen, G.J., and Fabrycky, W.J. (1993). Engineering economy. Prentice-Hall Inc., Englewood Cliff, New Jersey, U.S.A.