DOI QR코드

DOI QR Code

A Study on the Analysis of the Relationship between Sea Surface Temperature and Monthly Rainfall

해수면온도와 우리나라 월강우량과의 관계분석에 관한 연구

  • 오태석 (서울시립대학교 공과대학 토목공학과) ;
  • 문영일 (서울시립대학교 공과대학 토목공학과)
  • Received : 2009.11.25
  • Accepted : 2010.04.20
  • Published : 2010.05.31

Abstract

Rainfall events in the hydrologic circulation are closely related with various meteorological factors. Therefore, in this research, correlation relationship was analyzed between sea surface temperature of typical meteorological factor and monthly rainfall on Korean peninsula. The cluster analysis was performed monthly average rainfall data, longitude and latitude observed by rainfall observatory in Korea. Results from cluster analysis using monthly rainfall data in South Korea were divided into 4 regions. The principal components of monthly rainfall data were extracted from rainfall stations separated cluster regions. A correlation analysis was performed with extracted principal components and sea surface temperatures. At the results of correlation analysis, positive correlation coefficients were larger than negative correlation coefficients. In addition, The 3 month of principal components on monthly rainfall predicted by locally weighted polynomial regression using observed data of sea surface temperature where biggest correlation coefficients have. The result of forecasting through the locally weighted polynomial regression was revealed differences in accuracy. But, this methods in the research can be analyzed for forecasting about monthly rainfall data. Therefore, continuous research need through hydrological meteorological factors like a sea surface temperature about forecasting of the rainfall events.

수문학적 물순환과정에서 강우는 여러 기상학적 인자들과 밀접한 관련을 갖으며 발생한다. 따라서 본 연구에서는 대표적인 수문기상인자인 해수면온도와 한반도에 발생하는 월강우량 사이의 관계에 대하여 분석하였다. 우리나라의 61개 지점의 월평균 강우량과 위도 및 경도 자료를 이용하여 군집분석을 수행하였다. 군집 분석 결과에서 우리나라의 월강우자료를 이용하여 크게 4개의 군집으로 구분할 수 있었다. 군집별로 구분된 강우관측소의 월강우량 자료들을 주성분을 추출하였다. 추출된 주성분과 해수면온도와의 상관성 분석을 수행하였다. 상관성 분석 결과에서 양(+)의 상관관계가 음(-)의 상관관계보다 더 크게 나타났다. 또한, 상관관계가 가장 큰 지점의 해수면온도를 이용하여 3개월의 월강우량을 지역가중다항식을 통해 예측하였다. 지역가중다항식을 통한 예측 결과는 군집에 따라 정확성에 차이는 있으나, 정량적인 예측이 가능한 것으로 판단되었다. 따라서 해수면온도와 같은 수문기상인자를 통한 강우량의 예측에 대한 지속적인 연구가 필요하다.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. 김우철, 김재주, 박병욱, 박성현, 송문섭, 이상열, 이영조, 전종우, 조신섭(공저) (2008). 일반통계학. 영지문화사, pp. 338-339.
  2. 문영일, 권현한, 김동권(2005). "해수면온도와 우리나라 강우량과의 상관성 분석." 한국수자원학회논문집, 한국수자원학회, 제38권, 제12호, pp. 995-1008. https://doi.org/10.3741/JKWRA.2005.38.12.995
  3. 오태석, 문영일(2008). "우리나라 월강수량과 범지구적 해수면온도의 상관성 분석." 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 237-248.
  4. 오태석, 안재현, 문영일 권현한(2007) "우리나라 강수량 과 한반도 근해의 수온 및 기온의 상관성 분석." 대한 토목학회논문집, 대한토목학회, 제27권, 제2B호, pp. 1-15.
  5. 유철상, 정건희, 김중훈(2000). "우리나라 근해 해수면 온도와 기온 및 강수량과의 상관관계에 관한 연구." 한국 수자원학회 학술대회지, 한국수자원학회, pp. 145-150.
  6. 추현재, 김태웅, 이정규(2007). "우리나라 강수량과 태평양 해수면온도의 원격상관관계 분석.", 한국수자원학회 2007년도 학술발표회 논문집, 한국수자원학회, pp. 1953-1957.
  7. Barnston, A.G., and Smith, T.M. (1996). "Specification and Prediction of Global Surface Temperature and Precipitation from Global SST Using CCA." Journal of Climate, Vol. 9, pp. 2660-2697. https://doi.org/10.1175/1520-0442(1996)009<2660:SAPOGS>2.0.CO;2
  8. Cayan, D.R., and Peterson, D.H. (1989). "The Influence of North Pacific Atmospheric Circulation on Streamflow in the West." American Geophysical Union, Washington, D.C. pp. 375-397.
  9. Cleveland, W.S., and Devlin, S.J. (1988). "Locally weighted regression: An approach to regression analysis by local fitting." Journal of the American Statistical Association, Vol. 83, No. 403, pp. 596-610. https://doi.org/10.2307/2289282
  10. Harshburger, B., Ye, H., and Dzialoski, J. (2002). "Observational evidence of the influence of Pacific SSTs on winter precipitation and spring stream discharge in Idaho." Journal of Hydrology, Vol. 264, pp. 157-169. https://doi.org/10.1016/S0022-1694(02)00072-0
  11. Higgins, R.W., Kim, H.-K., and Unger, D. (2004). "Long-Lead Seasonal Temperature and Precipitation Prediction Using Tropical Pacific SST Consolidation Forecasts." Journal of Climate, Vol. 17, pp. 3398-3414. https://doi.org/10.1175/1520-0442(2004)017<3398:LSTAPP>2.0.CO;2
  12. Hotelling, H. (1931). "The generalization of student’s ratio." Annals of Mathematical Statistics, Vol. 2, No. 3, pp. 360-378. https://doi.org/10.1214/aoms/1177732979
  13. Klein, W.H., and Bloom, H.J. (1987). "Specification of monthly precipitation over the United States from the surrounding 700 mb height field." Month Weather Review, Vol. 115, pp. 2118-2132. https://doi.org/10.1175/1520-0493(1987)115<2118:SOMPOT>2.0.CO;2
  14. Kiladis, G.N., and Diaz, H.F. (1989). "Global climatic anomalies associated with extremes in the Southern Oscillation." Journal of Climate, Vol. 2, pp. 1069-1090. https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2
  15. Kim, T.-W., Valdes, J.B., Nijssen, B., and Roncayolo, D. (2006). "Quantification of linkages between largescale climatic patterns and precipitation in the colorado River Basin." Journal of Hydrology, Vol. 321, pp. 173-186. https://doi.org/10.1016/j.jhydrol.2005.07.043
  16. Loader, C. (1999). Local regression and likelihood. Springer, USA.
  17. Misra, V. (2003). "The Influence of Pacific SST Variability on the Precipitation over Southern Africa." Journal of Climate, Vol. 16, pp. 2408-2418. https://doi.org/10.1175/2785.1
  18. Moon, Y.I., and Lall, U. (1996). "Atmospheric flow indices and interannual Great Salt Lake variability." Journal of Hydrologic Engineering, Vol. 1, No. 2, pp. 55-62. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(55)
  19. Rautenbach, C.J., deW., and Smith, I.N. (2001). "Teleconnections between global sea-surface temperatures and the interannual variability of observed and model simulated rainfall over southern Africa." Journal of Hydrology, Vol. 254, pp. 1-15. https://doi.org/10.1016/S0022-1694(01)00454-1
  20. Uvo, C.B., Repelli, C.A., Zebiak, S.E., and Kushnir, Y. (1998). "The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation." Journal of Climate, Vol. 11, pp. 551- 562. https://doi.org/10.1175/1520-0442(1998)011<0551:TRBTPA>2.0.CO;2
  21. Smith, T.M., and Reynolds, R.W. (2003). "Extended Reconstruction of Global Sea Surface Temperatures Based on COADS Data (1854-1997)." Journal of Climate, Vol. 16, pp. 1495-1510. https://doi.org/10.1175/1520-0442-16.10.1495
  22. Smith, T.M., and Reynolds, R.W. (2004). "Improved Extended Reconstruction of SST(1854-1997)." Journal of Climate, Vol. 17, pp. 2466-2477. https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
  23. Smith, T.M., and Reynolds, R.W., Peterson, T.C., and Lawrimore, J. (2008). "Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006)." Journal of Climate, Vol. 21, pp. 2283-2296. https://doi.org/10.1175/2007JCLI2100.1
  24. Wand, M.P., and Jones, M.C. (1995). Kernel smoothing. Chapman & Hall/CRC, USA.

Cited by

  1. Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region vol.36, pp.1, 2016, https://doi.org/10.12652/Ksce.2016.36.1.0049