Abstract
Harris corner detector is commonly used to detect feature points for recognizing 2-D or 3-D objects. However, the feature points calculated from both of query and target objects need to be same positions to guarantee accurate recognitions. In order to check the positions of calculated feature points, we generate a Huffman tree which is based on adjacent feature values as inputs. However, the structures of two Huffman trees will be same as long as both of a query and targets have same feature values no matter how different their positions are. In this paper, we sort feature values and calculate the Euclidean distances of coordinates between two adjacent feature values. The Huffman Tree is generated with these Euclidean distances. As a result, the information of point locations can be included in the generated Huffman tree. This is the main strategy for accurate recognitions. We call this system as the HRM(Hybrid Retrieval Machine). This system works very well even when artificial random noises are added to original data. HRM can be used to recognize biological data such as proteins, and it will curtail the costs which are required to biological experiments.