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Abstract
In this paper, we consider estimators and a confidence interval for a reliability in two

independent right truncated Rayleigh distributions and consider the density of a ratio
in two independent right truncated Rayleigh distributions. And we obtain the density
of an estimator for a changing point in the density of a ratio in two independent right
truncated Rayleigh distributions.
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1. Introduction

For two independent random variables X and Y , and a real number c, the probability
P (X < cY ) is as given in Woo (2006): (i) it is a reliability when c = 1 , (ii) it is a
distribution of a ratio X/(X + Y ) when c = t/(1 − t) for o < t < 1.

McCool (1991) and Ali and Woo (2005) studied a inference on a reliability in the Weibull
distribution and Levy distribution, respectively. Bowman and Shenton (1998) and Ali et
al. (2005) studied the distribution of a ratio in a gamma distribution with the unit shape
parameter and a power function distribution, respectively. Woo (2006) provided a reliability
and a ratio in two independent random variables. Woo (2007) studied a reliability in a
half-triangle distribution. A truncated Rayleigh distribution has been widely applied to a
reliability of a life time in Saunders (2007). Woo (2008) studied reliability estimations and
a density function of a ratio in two independent different variates. Moon and Lee (2009)
studied a inference on the reliability P (X < Y ) in the gamma case. Moon et al. (2009)
considered a reliability and a ratio in two exponentiated complementary power function
distributions.

In this paper, we consider estimators and a confidence interval for a reliability in two
independent right truncated Rayleigh distributions and consider the density of a ratio in two
independent right truncated Rayleigh distributions. We obtain the density of an estimator
for a changing point in the density of a ratio in two independent right truncated Rayleigh
distribution
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2. Reliability estimation

The density function of a right truncated Rayleigh life time with a truncated point θ was
as given in Johnson et al. (1994):

F ′(x; θ) = f(x; θ) = 2xe−x
2

/(1 − e−θ
2

), 0 < x < θ. (2.1)

Let X ∼ f(x; θ1) and Y ∼ f(y; θ2) be independent life times. Then the reliability is given
as:

R ≡ P (Y < X) = (1 − e−θ
2
1 )/(2(1 − e−θ

2
2 )), if θ1 ≤ θ2 (2.2)

and

R = 1 − (1 − e−θ
2
2 )/(2(1 − e−θ

2
1 )), if θ2 < θ1. (2.3)

From the equations (2.2) and (2.3), it’s clear that P (Y < X) = 0.5 when θ1 = θ2 .
Here, we consider the estimation of R = P (Y < X) when θ1 ≤ θ2 because we can consider

it in the similar manner when θ1 > θ2 .
Assume X1, ..., Xm are iid life times from X ∼ f(x; θ1) and Y1, ..., Yn are iid life times

from Y ∼ f(x; θ2). And X ′is and Y ′j s are two independent random samples.
Let X(m) and Y(n) be the corresponding greatest order statistics. Then the corresponding

density functions are given as:

fX(m)
(x) =

m

(1 − e−θ
2
1 )m

(1 − e−x
2

)m−1 · 2xe−x
2

, 0 < x < θ1

and

fY(n)
(y) =

n

(1 − e−θ
2
2 )n

(1 − e−y
2

)n−1 · 2ye−y
2

, 0 < y < θ2. (2.4)

When θ1 ≤ θ2, a MLE (Maximum Likelihood Estimator) of the reliability is given by :

R̂ = ̂P (Y ≤ X) = (1 − e−X
2
(m))/(2(1 − e−Y

2
(n))).

From two density functions (2.4), we can obtain the k-moment of a MLE R̂ as follows:

E(R̂k) =
mn

(m+ k)(n− k)
Rk, if k < n, θ1 ≤ θ2. (2.5)

From the k-th moment (2.5), the expectation of the a MLE R̂ is given as:

E(R̂) =
mn

(m+ 1)(n− 1)
R. (2.6)

From the expectation (2.6), we define an unbiased estimator R̂U of a reliability as follows:

R̂U =
(m+ 1)(n− 1)

2mn
·

1 − e−X
2
(m)

1 − e
−Y 2

(n)

. (2.7)
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From the k-th moment (2.5) and an unbiased estimator R̂U in (2.7), we obtain mean

squared errors (MSEs) of R̂ and R̂U :

MSE(R̂) =

[
mn

(m+ 2)(n− 2)
−

2mn

(m+ 1)(n− 1)
+ 1

]
R2, n > 2

and

MSE(R̂U ) =

[
(m+ 1)2(n− 1)2

mn(m+ 2)(n− 2)
− 1

]
R2, n > 2. (2.8)

From the results (2.8), we obtain the following.

Fact 1. Assume θ1 ≤ θ2 in (2.2). If n > m ≥ 2, then a MLE R̂ is more efficient in the

sense of the MSEs than an unbiased estimator R̂U , and vice versa if 2 < n ≤ m.
Next, we consider a confidence interval of a reliability. From a quotient distribution in

Rohatgi (1976) and formula 3.381(1) in Gradshteyn and Ryzhik (1965), the density function

for a MLE R̂ is obtained as follows:

fR̂(x) =


mn

m+ n
R−m · xm−1, if 0 < x < R

mn

m+ n
Rn · x−n−1, if x ≥ R.

(2.9)

From the density function (2.9), Q ≡ R̂/R is a pivotal quantity with the following density:

fQ(x) =


mn

m+ n
xm−1, if 0 < x < 1

mn

m+ n
x−n−1, if x ≥ 1 .

(2.10)

For given 0 < pi < 1. i = 1, 2 , from the density function (2.10) of the pivotal quantity Q
, we provide a lower limit and an upper limit as follows∫ l(p1)

0

fQ(x)dx = p1and

∫ ∞
u(p2)

fQ(x)dx = p2.

Hence, a (1 − p1 − p2)100% confidence interval for reliability when θ1 ≤ θ2 is

(u(p2)−1 · R̂, l(p1)−1 · R̂) =

[p2 · (1 +
n

m
)

]1/n
· R̂,

[
p1(1 +

m

n
)

]−1/m
· R̂

 . (2.11)

Remark 1. When θ1 > θ2, we consider a reliability estimation by the similar manner
which we consider a reliability estimation when θ1 ≤ θ2 in (2.2).
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3. Distribution of ratio X/(X+Y)

Let X ∼ f(x; θ1) and Y ∼ f(y; θ2) be independent life times. From a quotient density
in Rohatigi (1976) and formula 3.381(1) in Gradshteyn and Ryzhik (1965), we obtain the
density of a quotient W = Y/X as follows

fW (w) =


2

(1 − e−θ
2
1 )((1 − e−θ

2
2 )

·
w

(1 + w2)2
· γ(2, (1 + w2)θ21), if 0 < w < θ2/θ1

2

(1 − e−θ
2
1 )(1 − e−θ

2
2 )

·
w

(1 + w2)2
· γ(2, θ22(1 + w2)/w2), if w ≥ θ2/θ1 ,

(3.1)

where γ(k, x) is an incomplete gamma function in Gradshteyn and Ryzhik (1965).
From the density (3.1) we obtain the density of a ratio V = X/(X + Y ) as follows

fV (v) =



2

(1 − e−θ
2
1 )(1 − e−θ

2
2 )

·
v(1 − v)

(v2 + (1 − v)2)2
· γ

(
2, θ22

v2 + (1 − v)2

(1 − v)2

)
,

if 0 < v < θ1/(θ1 + θ2)

2

(1 − e−θ
2
1 )(1 − e−θ

2
2 )

·
v(1 − v)

(v2 + (1 − v)2)2
· γ

(
2, θ21

v2 + (1 − v)2

v2

)
,

if θ1/(θ1 + θ2) ≤ v < 1.

(3.2)

It’s clear that the density (3.2) is symmetric about 1/2 when θ1 = θ2 .
From the density (3.2) of a ratio and formula 8.352(1) in Gradshteyn and Ryzhik (1965),

the approximate values of the mean, variance, and coefficient of skewness by integral com-
putations are given in Table 3.1.

Table 3.1 Mean, variance, and coefficient of skewness of the ratio density (3.2)

θ1 θ2 mean variance skewness
0.5 0.5 0.50000 0.02386 0.00000
0.25 0.75 0.28135 0.01807 1.16405
0.75 0.25 0.71865 0.18072 -1.16696
1.0 1.0 0.50000 0.02734 0.00000
1.25 1.75 0.46811 0.03119 0.14244
1.75 1.25 0.53189 0.03120 -0.14325
1.5 1.5 0.50000 0.03153 0.00000
2.0 2.0 0.50000 0.03430 0.00000
1.5 3.5 0.47817 0.03339 0.08437
3.5 1.5 0.52183 0.03340 -0.08526
3.5 3.5 0.50000 0.03540 0.00000

From Table 3.1, we observe the following:
Fact 2. (a) Mean and variance of ratio having θ1 > θ2 are greater than those of a ratio

having θ1 < θ2 .
(b) Variance of a ratio are slightly increasing as θ1 = θ2 = θ ≤ 3.5 is increasing.
(c) The density function (3.2) is skewed to the left when θ1 > θ2 , but skewed to the right

when θ1 < θ2 .
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Let’s consider the density of an estimator of a changing point θ ≡ θ1/(θ1 + θ2) in the
density of a ratio V = X/(X + Y ) .

The MLE of a changing point θ ≡ θ1/(θ1 + θ2) is given by

θ̂ ≡ θ̂1/(θ̂1 + θ̂2) = X(m)/(X(m) + Y(n)). (3.3)

From the pdfs (probability density functions) (2.4) of X(m) and Y(n) and the formula

3.381(1) in Gradshteyn and Ryzhik (1965), the density function of MLE θ̂ is obtained as
follows:

For
θ1

θ1 + θ2
< x < 1 ,

fθ̂(x) =
mn

(1 − e−θ
2
1 )m(1 − e−θ

2
2 )n

m∑
i=0

n∑
j=0

(−1)i+j
(
n− 1
i

)(
m− 1
j

)
·

2

(1 − x)2
·

x

1 − x

γ(2, [1 + i+ (1 + j)(
1 − x

x
)2]θ21)

[1 + i+ (1 + j)(
x

1 − x
)2]2

and for 0 < x ≤
θ1

θ1 + θ2
,

fθ̂(x) =
mn

(1 − e−θ
2
1 )m(1 − e−θ

2
2 )n

m∑
i=0

n∑
j=0

(−1)i+j
(
n− 1
i

)(
m− 1
j

)
·

2

x2
·

1 − x

x

γ(2, [1 + j + (1 + i)(
x

1 − x
)2]θ22)

[1 + i+ (1 + j)(
1 − x

x
)2]2

,

which is symmetric about 1/2 when θ1 = θ2 and m = n .
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