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Abstract

In this paper, we deal with the problem for testing homogeneity of coefficients
of variation in several normal distributions. We propose Bayesian hypothesis testing
procedures based on the Bayes factor under noninformative prior. The noninformative
prior is usually improper which yields a calibration problem that makes the Bayes factor
to be defined up to a multiplicative constant. So we propose the objective Bayesian
hypothesis testing procedures based on the fractional Bayes factor and the intrinsic
Bayes factor under the reference prior. Simulation study and a real data example are
provided.

Keywords: Coefficients of variation, fractional Bayes factor, intrinsic Bayes factor, nor-
mal distribution, reference prior.

1. Introduction

The coefficient of variation is a very useful measure of precision and repeatability of data
in medical and biological studies. In toxicology, the coefficient of variation is commonly
used to measure the precision within and between laboratories, or among replicates for each
treatment concentration. And the coefficient of variation is often used to assess the meter-
to-meter variability when comparing different types of equipment that perform the same
task (Plesch and Klimpel, 2002; Tian, 2005).

We consider that Xi = (Xi1, · · · , Xini
), i = 1, · · · , k, is a random sample of size ni from a

normal distribution with mean µi and variance µ2
i γ

2
i . Here γi is the coefficient of variation

in i-th population. Then the joint probability density function is

f(x1, · · · ,xk|µ1, · · · , µk, γ1, · · · , γk)

= (2π)−
n
2

k∏
i=1

µ−ni
i γ−ni

i exp

−
k∑

i=1

ni∑
j=1

(xij − µi)
2

2γ2
i µ

2
i

 , (1.1)
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where n = n1 + · · · + nk and µi > 0, i = 1, · · · , k. The present paper focuses on testing
homogeneity of coefficients of variation in several normal distributions.

In Bayesian model selection or testing problem, the Bayes factor under proper priors
or informative priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative priors such
as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989; 1992) are typically improper
so that such priors are only defined up to arbitrary constants which affects the values of
Bayes factors. Spiegelhalter and Smith (1982), O’Hagan (1995), and Berger and Pericchi
(1996) have made efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training sample in the context
of linear model comparisons to choose the arbitrary constants. But the choice of imaginary
training sample depends on the models under comparison, and so there is no guarantee
that the Bayes factor of Spiegelhalter and Smith (1982) is coherent for multiple model
comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a data-
splitting idea, which would eliminate the arbitrariness of improper prior. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion
of the likelihood with a so-called the fraction b. These approaches have shown to be quite
useful in many statistical areas (Kang et al., 2005; 2006; 2008). An excellent exposition of
the objective Bayesian method to model selection is Berger and Pericchi (2001).

For k normal populations, there exist several tests for testing the equality of coefficients
of variation. Gupta and Ma (1996), Feltz and Miller (1996) and Fung and Tsang (1998)
carried out a simulation study to compare several tests. Fung and Tsang (1998) concluded
that the modified Miller (1991) asymptotic test of all tests is a very good test for normal
distribution with respect to both sizes and power. Tian (2005) proposed a procedures for
interval estimation and hypothesis testing for the common coefficient of variation based on
the concepts of generalized confidence intervals and generalized p-values. Verrill and Johnson
(2007) provided a likelihood ratio test for the equality of coefficients of variation. However
there is a little work on the Bayesian inference about testing the homogeneity of coefficients
of variation. Lee et al. (2003) provided a Bayesian test procedure for the equality of two
coefficients of variation based on fractional Bayes factor.

In this paper, we propose the objective Bayesian hypothesis testing procedures based on
the Bayes factors for the homogeneity of coefficients of variation in several normal distri-
butions. The outline of the remaining sections is as follows. In Section 2, we introduce
the Bayesian hypothesis testing based on the Bayes factors. In Section 3, we provide the
Bayesian hypothesis testing procedures based on the fractional Bayes and intrinsic Bayes
factors. In Section 4, simulation study and a real data example are given.

2. Intrinsic and fractional Bayes factors

Suppose that hypotheses H1, · · · , Hq are under consideration, with the data x = (x1, · · · ,
xn) having probability density function fi(x|θi) under hypothesis Hi. The parameter vectors
θi are unknown. Let πi(θi) be the prior distributions of hypothesis Hi, and let pi be the
prior probability of hypothesis Hi, i = 1, · · · , q. Then the posterior probability that the



Bayesian hypothesis testing for homogeneity of coefficients of variation 165

hypothesis Hi is true is

P (Hi|x) =

(
q∑

i=1

pj
pi
·Bji

)−1

, (2.1)

where Bji is the Bayes factor of hypothesis Hj to hypothesis Hi defined by

Bji =

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

=
mj(x)

mi(x)
. (2.2)

The Bji interpreted as the comparative support of the data for Hi versus Hi. The com-
putation of Bji needs specification of the prior distribution πi(θi) and πj(θj). Often in
Bayesian analysis, one can use noninformative priors πN

i . Common choices are the uni-
form prior, Jeffreys’ prior and the reference prior. The noninformative prior πN

i is typically
improper. Hence the use of noninformative prior πN

i in (2.2) causes the Bji to contain un-
specified constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic
Bayes factor, and O’Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(l) denote the part of the data to be so used and let x(−l) be the remainder of the
data, such that

0 < mN
i (x(l)) <∞, i = 1, · · · , q. (2.3)

In view (2.3), the posteriors πN
i (θi|x(l)) are well defined. Now, consider the Bayes factor,

Bji(l), with the remainder of the data x(−l) using πN
i (θi|x(l)) as the priors:

Bji(l) =

∫
fj(x(−l)|θj ,x(l))πj(θj |x(l))dθj∫
fi(x(−l)|θi,x(l))πi(θi|x(l))dθi

= BN
ji ·BN

ij (x(l)), (2.4)

where

BN
ji = BN

ji (x) =
mN

j (x)

mN
i (x)

and BN
ij (x(l)) =

mN
i (x(l))

mN
j (x(l))

are the Bayes factors that would be obtained for the full data x and training sample x(l),
respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to compute
BN

ij (x(l)). Then, an average over all the possible minimal training samples contained in the
sample is computed. Thus the arithmetic intrinsic Bayes factor (AIBF) of Hj to Hi is

BAI
ji = BN

ji ·
1

L

L∑
l=1

BN
ij (x(l)), (2.5)

where L is the number of all possible minimal training samples. Also the median intrinsic
Bayes factor (MIBF) by Berger and Pericchi (1998) of Hj to Hi is

BMI
ji = BN

ji ·ME[BN
ij (x(l))], (2.6)
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where ME indicates the median for all possible training sample Bayes factors. Therefore
we can also calculate the posterior probability of Hi using (2.1), where Bji is replaced by
BAI

ji and BMI
ji from (2.5) and (2.6), respectively.

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead o f using part of the data to turn noninformative
priors into proper priors, it uses a fraction, b of each likelihood function, L(θi|x) = fi(x|θi),
with the remaining 1− b faction of the likelihood used for model discrimination. Then the
factional Bayes factor (FBF) of hypothesis Hj versus hypothesis Hi is

BF
ji =

∫
Lb(θj |x)πN

j (θj)dθj∫
Lb(θi|x)πN

i (θi)dθi
= BN

ji ·
mb

i (x)

mb
j(x)

. (2.7)

O’Hagan (1995) proposed three ways for the choice of the fraction b. One common choice
of b is b = m/n, where m is the size of the minimal training sample, assuming that this
number is uniquely defined (O’Hagan (1995; 1997) and the discussion by Berger and Mortera
in O’Hagan (1995)).

3. Bayesian hypothesis testing procedures

Consider that we have n1 observations X11, · · · , X1n1
from the normal distribution

N(µ1, µ
2
1τ

2
1 ), n2 observations X21, · · · , X2n2

from the N(µ2, µ
2
2τ

2
2 ),· · · , and nk observations

Xk1, · · · , Xknk
from the N(µk, µ

2
kτ

2
k ), and that µ1, · · · , µk > 0. And we assume that all of

theses observations are statistically independent. We are interest to testing the hypotheses
H1 : τ1 = · · · = τk ≡ τ versus H2 : τ1 6= · · · 6= τk based on the fractional Bayes factor and
the intrinsic Bayes factor.

3.1. Bayesian hypothesis testing based on the Fractional Bayes factor

Under the hypothesis H1, the reference prior for (τ, µ1, · · · , µk) is

πN
1 (τ, µ1, · · · , µk) ∝ τ−1(1 + 2τ2)−

1
2µ−1

1 · · ·µ
−1
k . (3.1)

This reference prior derived by Kim, Kang and Lee (2008). They showed that the posterior
distribution under a general prior including the reference is proper. And the likelihood
function is given by

L(τ, µ1, · · · , µk|x) = (2π)−
n
2 τ−n

k∏
i=1

µ−ni
i exp

{
−
∑ni

j=1(xij − µi)
2

2µ2
i τ

2

}
, (3.2)

where x = (x1, · · · ,xk), xi = (xi1, · · · , xini
), i = 1, · · · , k, and n =

∑k
i=1 ni. Then from the

likelihood (3.2) and the reference prior (3.1), the element of the FBF under H1, mb
1(x), is
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given by

mb
1(x) =

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

Lb(τ, µ1, · · · , µk|x)πN
1 (τ, µ1, · · · , µk)dτdµ1 · · · dµk

=

∫ ∞
0

· · ·
∫ ∞

0

(2π)−
nb
2 2

nb
2 −1Γ

(
nb+ 1

2

)( k∏
i=1

µ−nib−1
i

)

× U

[
nb+ 1

2
,
nb+ 2

2
,

k∑
i=1

∑ni

j=1 b(xij − µi)
2

µ2
i

]
dµ1 · · · dµk, (3.3)

where U [a, b, z] = 1
Γ[a]

∫∞
0
e−ztta−1(1 + t)b−a−1dt is the confluent hypergeometric function

of the second kind.
Under the hypothesis H2, the reference prior for (τ1, µ1, · · · , τk, µk) is

πN
2 (τ1, µ1, · · · , τk, µk) ∝

k∏
i=1

τ−1
i (1 + 2τ2

i )−
1
2µ−1

i , (3.4)

The above reference prior can directly derived from Lee et al. (2003). And the likelihood
function is given by

L(τ1, µ1, · · · , τk, µk|x) = (2π)−
n
2

k∏
i=1

µ−ni
i τ−ni

i exp

{
−
∑ni

j=1(xij − µi)
2

2µ2
i τ

2
i

}
. (3.5)

Then from the likelihood (3.5) and the reference prior (3.4), the element of the FBF under
H2, mb

2(x), is given by

mb
2(x) =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

Lb(τ1, µ1, · · · , τk, µk|x)

× πN
2 (τ1, µ1, · · · , τk, µk)dτ1dµ1 · · · dτkdµk

=

∫ ∞
0

· · ·
∫ ∞

0

(2π)−
nb
2

k∏
i=1

2
nib

2 −1Γ

(
nib+ 1

2

)
µ−nib−1
i (3.6)

× U

[
nib+ 1

2
,
nib+ 2

2
,

∑ni

j=1 b(xij − µi)
2

µ2
i

]
dµ1 · · · dµk.

Therefore the element BN
21 of the FBF is given by

BN
21 =

S2(x1, · · · ,xk)

S1(x1, · · · ,xk)
, (3.7)

where

S1(x1, · · · ,xk) =

∫ ∞
0

· · ·
∫ ∞

0

Γ

(
n+ 1

2

)( k∏
i=1

µ−ni−1
i

)

× U

[
n+ 1

2
,
n+ 2

2
,

k∑
i=1

∑ni

j=1(xij − µi)
2

µ2
i

]
dµ1 · · · dµk
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and

S2(x1, · · · ,xk) =

∫ ∞
0

· · ·
∫ ∞

0

2−k+1
k∏

i=1

Γ

(
ni + 1

2

)
µ−ni−1
i

× U

[
ni + 1

2
,
ni + 2

2
,

∑ni

j=1(xij − µi)
2

µ2
i

]
dµ1 · · · dµk.

And the ratio of marginal densities with fraction b is

mb
1(x)

mb
2(x)

=
S1(x1, · · · ,xk; b)

S2(x1, · · · ,xk; b)
, (3.8)

where

S1(x1, · · · ,xk; b) =

∫ ∞
0

· · ·
∫ ∞

0

Γ

(
nb+ 1

2

) k∏
i=1

µ−nib−1
i

× U

[
nb+ 1

2
,
nb+ 2

2
,

k∑
i=1

∑ni

j=1 b(xij − µi)
2

µ2
i

]
dµ1 · · · dµk

and

S2(x1, · · · ,xk; b) =

∫ ∞
0

· · ·
∫ ∞

0

2−k+1
k∏

i=1

Γ

(
nib+ 1

2

)
µ−nib−1
i

× U

[
nib+ 1

2
,
nib+ 2

2
,

∑ni

j=1 b(xij − µi)
2

µ2
i

]
dµ1 · · · dµk.

Thus from (3.7) and (3.8), the FBF of H2 versus H1 is given by

BF
21 =

S2(x1, · · · ,xk)

S1(x1, · · · ,xk)
· S1(x1, · · · ,xk; b)

S2(x1, · · · ,xk; b)
. (3.9)

Note that the calculation of the FBF of H2 versus H1 requires actually two dimensional
integration.

3.2. Bayesian hypothesis testing based on the intrinsic Bayes factor

The emement BN
21 of the intrinsic Bayes factor is computed in the fractional Bayes factor.

So under the minimal training sample, we only calculate the marginal densities for the
hypotheses H1 and H2, respectively. The marginal density of (X1j1 , X1j2 , · · · , Xkl1 , Xkl2) is
finite for all 1 ≤ j1 < j2 ≤ n1, · · · , and 1 ≤ l1 < l2 ≤ nk under each hypothesis (Lee et al.,
2003; Kim et al., 2008). Thus we conclude that any training sample of size 2k is a minimal
training sample.
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The marginal density mN
1 (x1j1 , x1j2 , · · · , xkl1 , xkl2) under H1 is given by

m1(x1j1 , x1j2 , · · · , xkl1 , xkl2)

=

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

f(x1j1 , x1j2 , · · · , xkl1 , xkl2 |τ, µ1, · · · , µk)πN
1 (τ, µ1, · · · , µk)dτdµ1 · · · dµk

=

∫ ∞
0

· · ·
∫ ∞

0

(2π)−k2k−1Γ

(
2k + 1

2

) k∏
i=1

µ−3
i (3.10)

× U

[
2k + 1

2
, k + 1,

k∑
i=1

∑2
j=1(xij − µi)

2

µ2
i

]
dµ1 · · · dµk.

And the marginal density mN
2 (x1j1 , x1j2 , · · · , xkl1 , xkl2) under H2 is given by

m2(x1j1 , x1j2 , · · · , xkl1 , xkl2)

=

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

∫ ∞
0

f(x1j1 , x1j2 , · · · , xkl1 , xkl2 |τ1, µ1, · · · , τk, µk)

× πN
2 (τ1, µ1, · · · , τk, µk)dτ1dµ1 · · · dτkdµk

=

∫ ∞
0

· · ·
∫ ∞

0

(2π)−k
π

k
2

2k

k∏
i=1

µ−3
i U

[
3

2
, 2,

∑2
j=1(xij − µi)

2

µ2
i

]
dµ1 · · · dµk. (3.11)

Therefore the AIBF of H2 versus H1 is given by

BAI
21 =

S2(x1, · · · ,xk)

S1(x1, · · · ,xk)
· 1

L

∑
j1<j2

· · ·
∑
l1<l2

T1(x1j1 , x1j2 , · · · , xkl1 , xkl2)

T2(x1j1 , x1j2 , · · · , xkl1 , xkl2)
, (3.12)

where L is
∏k

i=1 ni(ni − 1)/2,

T1(x1j1 , x1j2 , · · · , xkl1 , xkl2) =

∫ ∞
0

· · ·
∫ ∞

0

2k−1Γ

(
2k + 1

2

) k∏
i=1

µ−3
i

× U

[
2k + 1

2
, k + 1,

k∑
i=1

∑2
j=1(xij − µi)

2

µ2
i

]
dµ1 · · · dµk

and

T2(x1j1 , x1j2 , · · · , xkl1 , xkl2) =

∫ ∞
0

· · ·
∫ ∞

0

π
k
2

2k

k∏
i=1

µ−3
i U

[
3

2
, 2,

∑2
j=1(xij − µi)

2

µ2
i

]
dµ1 · · · dµk.

And also the MIBF of H2 versus H1 is given by

BMI
21 =

S2(x1, · · · ,xk)

S1(x1, · · · ,xk)
·ME

[
T1(x1j1 , x1j2 , · · · , xkl1 , xkl2)

T2(x1j1 , x1j2 , · · · , xkl1 , xkl2)

]
. (3.13)

Note that the calculations of the AIBF and MIBF of H2 versus H1 requires actually two
dimensional integration.
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4. Numerical study

In order to assess the Bayesian hypothesis testing procedures, we evaluate the posterior
probability for several configurations of (µ1, τ1, · · · , µk, τk) amd (n1, · · · , nk). In particular,
for fixed (µ1, τ1, · · · , µk, τk), we take 200 independent random samples of X1, · · · , Xk with
sample sizes n1, · · · , nk from the model (1.1). We want to test the hypotheses H1 : τ1 =
· · · = τk ≡ τ versus H2 : τ1 6= · · · 6= τk.

The posterior probabilities of H1 being true are computed assuming equal prior proba-
bilities. Tables 4.1 and 4.2 show the results of the averages and the standard deviations in
parentheses of posterior probabilities. From Tables 4.1 and 4.2, the FBF, the AIBF and the
MIBF give fairly reasonable answers for all configurations. The MIBF favors the hypothesis
H1, but the FBF favors the hypothesis H2. And the AIBF is between the MIBF and the
FBF.

Table 4.1 The average and the standard deviations in parentheses of Posterior probabilities

µ1, µ2, µ3 τ1, τ2, τ3 n1, n2, n3 PF (H1|x) PAI(H1|x) PMI(H1|x)
1.0,1.0,1.0 0.1,0.1,0.1 5,5,5 0.624 (0.167) 0.733 (0.182) 0.748 (0.175)

5,5,10 0.660 (0.192) 0.748 (0.188) 0.761 (0.181)
5,10,10 0.747 (0.179) 0.836 (0.157) 0.846 (0.150)

0.1,0.1,0.2 5,5,5 0.432 (0.239) 0.530 (0.277) 0.557 (0.270)
5,5,10 0.406 (0.267) 0.517 (0.294) 0.539 (0.291)
5,10,10 0.396 (0.299) 0.490 (0.328) 0.511 (0.326)

0.1,0.1,0.4 5,5,5 0.163 (0.210) 0.207 (0.264) 0.234 (0.275)
5,5,10 0.071 (0.115) 0.111 (0.161) 0.129 (0.173)
5,10,10 0.047 (0.114) 0.066 (0.153) 0.074 (0.163)

0.1,0.5,1.0 5,5,5 0.060 (0.077) 0.095 (0.117) 0.119 (0.136)
5,5,10 0.027 (0.049) 0.062 (0.098) 0.081 (0.116)
5,10,10 0.025 (0.044) 0.074 (0.103) 0.094 (0.121)

10.0,10.0,10.0 0.1,0.1,0.1 5,5,5 0.656 (0.165) 0.754 (0.177) 0.759 (0.170)
5,5,10 0.697 (0.170) 0.781 (0.148) 0.786 (0.142)
5,10,10 0.728 (0.180) 0.813 (0.162) 0.817 (0.159)

0.1,0.1,0.2 5,5,5 0.445 (0.238) 0.535 (0.277) 0.553 (0.271)
5,5,10 0.395 (0.250) 0.500 (0.271) 0.515 (0.268)
5,10,10 0.333 (0.279) 0.431 (0.315) 0.444 (0.314)

0.1,0.1,0.4 5,5,5 0.167 (0.203) 0.212 (0.251) 0.233 (0.256)
5,5,10 0.065 (0.112) 0.099 (0.157) 0.113 (0.166)
5,10,10 0.029 (0.096) 0.043 (0.122) 0.047 (0.127)

0.1,0.5,1.0 5,5,5 0.054 (0.085) 0.085 (0.122) 0.106 (0.135)
5,5,10 0.023 (0.034) 0.055 (0.073) 0.070 (0.087)
5,10,10 0.024 (0.042) 0.070 (0.098) 0.089 (0.116)

Example 4.1 This example taken from Meier (1953). In this example, four experiments
are used to estimate the mean percentage of albumin in the plasma protein of normal human
subjects. The summary statistics are given in Table 4.3.

The values of the fractional Bayes factor and the posterior probability of H1 are 0.218
and 0.821, respectively. The p-value from the asymptotic likelihood ratio test by Verrill
and Johnson (2007) is 0.134. Thus the Bayesian and classical testing methods give the
same result. Also for different values of s2

4 with the remaining sampling values fixed, we
compute values of the fractional Bayes factor, and the p-values based on the asymptotic and
sumulation procedures by Verrill and Johnson (2007). For s2

4 = 28.510, the values of the
fractional Bayes factor and the posterior probability of H1 are 0.564 and 0.639, respectively.
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Table 4.2 The average and the standard deviations in parentheses of Posterior probabilities

µ1, µ2, µ3, µ4 τ1, τ2, τ3, τ4 n1, n2, n3, n4 PF (H1|x) PAI(H1|x) PMI(H1|x)
1.0,1.0,1.0,1.0 0.1,0.1,0.1,0.1 4,4,4,4 0.611 (0.196) 0.749 (0.210) 0.784 (0.196)

4,4,8,8 0.698 (0.222) 0.797 (0.214) 0.827 (0.194)
0.1,0.1,0.1,0.2 4,4,4,4 0.472 (0.232) 0.595 (0.273) 0.650 (0.257)

4,4,8,8 0.428 (0.296) 0.550 (0.321) 0.598 (0.308)
0.1,0.1,0.1,0.4 4,4,4,4 0.190 (0.208) 0.248 (0.273) 0.310 (0.290)

4,4,8,8 0.059 (0.141) 0.088 (0.193) 0.109 (0.216)
0.1,0.4,0.7,1.0 4,4,4,4 0.106 (0.118) 0.193 (0.187) 0.265 (0.215)

4,4,8,8 0.055 (0.087) 0.184 (0.188) 0.256 (0.222)
10.0,10.0,10.0,10.0 0.1,0.1,0.1,0.1 4,4,4,4 0.634 (0.164) 0.763 (0.172) 0.788 (0.161)

4,4,8,8 0.725 (0.213) 0.829 (0.174) 0.849 (0.157)
0.1,0.1,0.1,0.2 4,4,4,4 0.490 (0.240) 0.600 (0.274) 0.643 (0.260)

4,4,8,8 0.415 (0.302) 0.533 (0.329) 0.572 (0.321)
0.1,0.1,0.1,0.4 4,4,4,4 0.208 (0.226) 0.266 (0.287) 0.317 (0.300)

4,4,8,8 0.071 (0.138) 0.103 (0.191) 0.124 (0.210)
0.1,0.4,0.7,1.0 4,4,4,4 0.106 (0.114) 0.194 (0.185) 0.258 (0.214)

4,4,8,8 0.048 (0.077) 0.167 (0.165) 0.235 (0.201)

And the p-values from the asymptotic likelihood ratio test and the simulation procedure by
Verrill and Johnson (2007) is 0.050 and 0.078, respectively. For s2

4 = 32.547, the values of the
fractional Bayes factor and the posterior probability of H1 are 0.914 and 0.522, respectively.
And the p-values from the asymptotic likelihood ratio test and the simulation procedure by
Verrill and Johnson (2007) is 0.030 and 0.050, respectively. So the fractional Bayes factor
and the simulation procedure by Verrill and Johnson (2007) give the similar results. Verrill
and Johnson (2007) showed that the simulation procedure works well even for small samples
than asymptotic procedure.

Table 4.3 Percentage of albumin in Plasma protein

Experiment ni x̄i s2i
A 12 62.3 12.986
B 15 60.3 7.840
C 7 59.5 33.433
D 16 61.5 18.513

5. Concluding remarks

In the normal distributions, we developed the objective Bayesian hypothesis testing proce-
dures based on the fractional Bayes factor and the intrinsic Bayes factor for the homogeneity
of coefficients of variation under the reference priors. From our numerical results, the de-
veloped testing procedures give fairly reasonable answers for all parameter configurations.
The Bayesian and classical testing methods gave the same result. However the FBF favors
the hypothesis H2 and the MIBF favors the hypothesis H1. And the AIBF is between the
MIBF and the FBF. Therefore from our results of simulation and example, we recommend
the use of the AIBF and the FBF than the MIBF in practical application.

References



172 Sang Gil Kang

Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference
priors. Journal of the American Statistical Association, 84, 200-207.

Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion), Bayesian
Statistics IV, J.M. Bernardo, et. al., Oxford University Press, Oxford, 35-60.

Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction.
Journal of the American Statistical Association, 91, 109-122.

Berger, J. O. and Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median
intrinsic Bayes factor. Sankya, B, 60, 1-18.

Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: introduction
and comparison (with discussion). In Model selection, institute of mathematical statistics lecture notes-
monograph series, Vol 38, Ed. P. Lahiri, 135-207, Beachwood Ohio.

Feltz, C. J. and Miller, G. E. (1996). An asymptotic test for the equality of coefficients of variation from k
populations. Statistics in Medicine, 15, 647-658.

Fung, W. K. and Tsang, T. S. (1998). A simulation study comparing tests for the equality of coefficients
of variation. Statistics in Medicine, 17, 2003-2014.

Gupta, R. C. and Ma, S. (1996). Testing the equality of coefficients of variation in k normal populations.
Communications in Statistics-Theory and Methods, 25, 115-132.

Kang, S. G., Kim, D. H. and Lee, W. D. (2005). Bayesian analysis for the difference of exponential means.
Journal of Korean Data & Information Science Society, 16, 1067-1078.

Kang, S. G., Kim, D. H. and Lee, W. D. (2006). Bayesian one-sided testing for the ratio of Poisson means.
Journal of Korean Data & Information Science Society, 17, 619-631.

Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Bayesian model selection for inverse Gaussian populations
with heterogeneity. Journal of Korean Data & Information Science Society, 19, 621-634.

Kim, D. H., Kang, S. G. and Lee, W. D. (2008). Noninformative priors of the common coefficient of
variation in several normal distributions, Unpublished manuscript.

Lee, H. C., Kang, S. G. and Kim D. H. (2003). Bayesian test for equality of coefficients of variation in the
normal distributions. Journal of Korean Data & Information Science Society, 14, 1023-1030.

Meier, P. (1953). Variance of a weighted mean. Biometrics, 9, 59-73.
Miller, G. E. (1991). Asymptotic test statistics for coefficients of variation. Communications in Statistics-

Theory and Methods, 20, 3351-3363.
O’Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of Royal

Statistical Society, B, 57, 99-118.
O’Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors. Test, 6, 101-118.
Plesch, W. and Klimpel, P. (2002). Performance evaluation of the CoaguChek S system. Haematologia,

87, 557-559.
Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague

prior information. Journal of Royal Statistical Society, B, 44, 377-387.
Tian, L. (2005). Inferences on the common coefficient of variation. Statistics in Medicine, 24, 2213-2220.
Verrill, S. and Johnson, R. (2007). Confidence bounds and hypothesis tests for normal distribution coeffi-

cients of variation. Communications in Statistics-Theory and Methods, 36, 2187-2207.


