References
- Bhalla, S., Naidu, A.S.K. and Soh, C.K. (2002), "Influence of structure-actuator interactions and temperature on piezoelectric mechatronic signatures for NDE", Proceedings of the ISSS-SPIE International Conferences on Smart Materials Structures and Systems, Bangalore, December.
- Giurgiutiu, V., Reynolds, A. and Rogers, C.A. (1999), "Experimental investigation of E/M impedance health monitoring of spot-welded structure joints", J. Intel. Mat. Syst. Str., 10, 802812. https://doi.org/10.1106/N0J5-6UJ2-WlGV-Q8MC
- Giurgiutiu, V., Zagrai, A.N. and Bao, J.J. (2002), "Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring", J. Struct. Health Monit., 1, 41-61. https://doi.org/10.1177/147592170200100104
- Giurgiutiu, V. (2008), Structural health monitoring with piezoelectric wafer active sensors, Amsterdam: Elsevier/Academic Press.
- Grisso, B.L. and Inman, D.J. (2005), "Developing an autonomous on-orbit impedance-based SHM system for thermal protection systems", Proceedings of the 5th Int'l Workshop on Structural Health Monitoring, Stanford, CA, September.
- Koo, K.Y., Park, S., Lee, J.J. and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intel. Mat. Syst. Str., 20, 367-377. https://doi.org/10.1177/1045389X08088664
- Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5, 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Lynch, J.P., Sundararajan, A., Law, K.H., Sohn, H. and Farrar, C.R. (2004), "Design of a wireless active sensing unit for structural health monitoring", Proceedings of the SPIE Annual Int'l Symposium on Smart Structures and Materials, San Diego, CA, March.
- Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16, 21372145. https://doi.org/10.1088/0964-1726/16/6/016
- Mascarenas, D.L., Park, G., Farinholt, K., Todd, M.D. and Farrar, C.R. (2009), "A low-power wireless sensing device for remote inspection of bolted joints", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(5), 565-575. https://doi.org/10.1243/09544100JAERO378
- Overly, T.G., Park, G., Farrar, C.R. and Allemang, R.J. (2007), "Compact hardware development for structural health monitoring and sensor diagnostics using admittance measurements", Proceedings of the IMAC-XXV: A Conference & Exposition on Structural Dynamics, Orlando, FL, February.
- Overly, T.G., Park, G., Farinholt, K.M. and Farrar, C.R. (2008), "Development of an extremely compact impedance-based wireless sensing device", Smart Mater. Struct., 17(6).
- Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J. A-Solid M., 42, 249-258. https://doi.org/10.1299/jsmea.42.249
- Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35, 451-463. https://doi.org/10.1177/05831024030356001
- Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006), "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", J. Vib. Acoust., 128, 469-476. https://doi.org/10.1115/1.2202157
- Park, S., Yun, C.B., Roh, Y. and Lee, J.J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1, 339-353. https://doi.org/10.12989/sss.2005.1.4.339
- Park, S., Shin, H.H. and Yun, C.B. (2009a), "Wireless impedance sensor nodes for functions of structural damage identification and sensor self-diagnosis", Smart Mater. Struct., 18, 1-11.
- Park, S., Park, G., Yun, C.B. and Farrar, C.R. (2009b), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", J. Struct. Health Monit., 8(1), 71-82. https://doi.org/10.1177/1475921708094792
- Peairs, D.M., Tarazaga, P.A. and Inman, D.J. (2006), "A study of the correlation between PZT and MFC resonance peaks and damage detection frequency intervals using the impedance method", Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, Belgium, September.
- Saint-Pierre, N., Jayet, Y., Perrissin-Fabert, I. and Baboux, J.C. (1996), "The influence of bonding defects on the electric impedance of piezoelectric embedded element", J. Phys. D. Appl. Phys., 29, 2976-2982. https://doi.org/10.1088/0022-3727/29/12/006
- Taylor, S.G., Farinholt, K.M., Park, G. and Farrar, C.R. (2009a), "Wireless impedance device for electromechanical impedance sensing and low-frequency vibration data acquisition", Proceedings of the SPIE Annual International Symposium on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, March.
- Talyor, S.G., Farinholt, K.M., Flynn, E.B., Figueiredo, E., Mascarenas, D.L., Moro, E.A., Park, G., Todd, M.D. and Farrar, C.R. (2009b), "A mobile-agent-based wireless sensing network for structural monitoring applications", Meas. Sci. Technol., 20(4).
Cited by
- Investigation of a new experimental method for damage assessment of RC beams failing in shear using piezoelectric transducers vol.114, 2016, https://doi.org/10.1016/j.engstruct.2016.02.014
- Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
- Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters vol.8, pp.12, 2012, https://doi.org/10.1155/2012/597546
- A Recent Research Summary on Smart Sensors for Structural Health Monitoring vol.19, pp.3, 2015, https://doi.org/10.11112/jksmi.2015.19.3.010
- Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods vol.24, pp.9, 2013, https://doi.org/10.1177/1045389X13481254
- Real-time strength development monitoring for concrete structures using wired and wireless electro-mechanical impedance techniques vol.17, pp.6, 2013, https://doi.org/10.1007/s12205-013-0390-1
- Laser based impedance measurement for pipe corrosion and bolt-loosening detection vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.041
- Smart sensing, monitoring, and damage detection for civil infrastructures vol.15, pp.1, 2011, https://doi.org/10.1007/s12205-011-0001-y
- Active-sensing platform for structural health monitoring: Development and deployment vol.15, pp.4, 2016, https://doi.org/10.1177/1475921716642171
- Impedance-based Long-term Structural Health Monitoring for Tidal Current Power Plant Structure in Noisy Environments vol.25, pp.4, 2011, https://doi.org/10.5574/KSOE.2011.25.4.059
- Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology vol.20, pp.11, 2011, https://doi.org/10.1088/0964-1726/20/11/115002
- Impedance-based structural health monitoring using neural networks for autonomous frequency range selection vol.19, pp.12, 2010, https://doi.org/10.1088/0964-1726/19/12/125011
- Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.283
- Impedance-based damage monitoring of steel column connection: numerical simulation vol.1, pp.3, 2014, https://doi.org/10.12989/smm.2014.1.3.339
- An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems vol.17, pp.1, 2016, https://doi.org/10.12989/sss.2016.17.1.107
- Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS) to Structures—Tests in RC elements vol.5, 2016, https://doi.org/10.1016/j.cscm.2016.03.003
- Impedance-based wireless debonding condition monitoring of CFRP laminated concrete structures vol.44, pp.2, 2011, https://doi.org/10.1016/j.ndteint.2010.10.006
- Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity vol.39, 2012, https://doi.org/10.1016/j.engstruct.2012.01.012
- Smart wireless sensing and assessment for civil infrastructure vol.10, pp.4, 2014, https://doi.org/10.1080/15732479.2013.769011
- Monolithic Composite “Pressure + Acceleration + Temperature + Infrared” Sensor Using a Versatile Single-Sided “SiN/Poly-Si/Al” Process-Module vol.13, pp.12, 2013, https://doi.org/10.3390/s130101085
- A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures vol.18, pp.5, 2018, https://doi.org/10.3390/s18051307
- 온도 및 하중 영향을 고려한 임피던스 기반 조류발전용 재킷 구조물의 장기 건전성 모니터링 vol.31, pp.a5, 2010, https://doi.org/10.12652/ksce.2011.31.5a.351
- Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2010, https://doi.org/10.12989/smm.2017.4.4.301
- Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study vol.19, pp.5, 2010, https://doi.org/10.3390/s19051054
- Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium vol.24, pp.4, 2010, https://doi.org/10.12989/sss.2019.24.4.507