Establishment of Baseline Sensitivity of Phytophthora capsici Causing Pepper Phytophthora Blight to Carboxylic Acid Amide Fungicides

Carboxylic acid amide계 살균제에 대한 고추 역병균 Phytophthora capsici의 감수성 기준 설정

  • Kim, Jin-Ho (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Kim, Joo-Hyung (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Lee, Kyeong-Hee (Environment-Friendly Agriculture Research Division, Chungbuk Agricultural Research and Extension Services) ;
  • Rho, Chang-Woo (Environment-Friendly Agriculture Research Division, Chungbuk Agricultural Research and Extension Services) ;
  • Kim, Heung-Tae (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University)
  • 신진호 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김주형 (충북대학교 농업생명환경대학 식물의학과) ;
  • 이경희 (충북농업기술원 친환경농업과) ;
  • 노창우 (충북농업기술원 친환경농업과) ;
  • 김흥태 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2010.10.02
  • Accepted : 2010.11.23
  • Published : 2010.12.31

Abstract

Baseline sensitivity to benthiavalicarb, iprovalicarb and dimethomorph included into carboxylic acid amide (CAA) group was evaluated in 180 isolates of Phytophthora capsici over 4 years from 2005 to 2008. $EC_{50}$ (effective concentration inhibiting mycelial growth by 50%) value of benthiavalicarb ranged from $0.015{\mu}g\;mL^{-1}$ to $0.049{\mu}g\;mL^{-1}$ with a mean of $0.033{\mu}g\;mL^{-1}$. The mean values of $EC_{50}$ of iprovalicarb and dimethomorph were 0.411 (0.197 - 0.556) ${\mu}g\;mL^{-1}$ and 0.271 (0.101 - 0.798) ${\mu}g\;mL^{-1}$, respectively. Although there was no increasing tendency in $EC_{50}$of benthiavalicarb and iprovalicarb during 4 years, $EC_{50}$ of dimethomorph was increased gradually by laps of time. There was no cross-resistance between each fungicide used in this study and metalaxyl. Among fungicides included into CAA group, there was a positive correlation between benthiavalicarb and iprovalicarb, and between dimethomorp and mandipropamid.

고추 주요 재배지에서 2005년부터 2008년까지 4년에 걸쳐 채집한 180개의 고추 역병균 Phytophthora capsici을 대상으로 carboxylic acid arnide(CAA)계열의 benthiavalicarb, iprovalicarb, dimethomorph에 대한 감수성/저항성 반응을 검정하였다. 실험에 사용한 3가지 살균제에 대한 $EC_{50}$값(병원균의 균사생장을 50% 억제하는 농도)은 benthiavalicarb가 0.033(0.015-0.049) ${\mu}g\;mL^{-1}$, iprovalicarb가 0.411(0.197-0.556) ${\mu}g\;mL^{-1}$, dimethomorph가 0.271(0.101-0.798) ${\mu}g\;mL^{-1}$로 나타났다. Benthiavalicarb와 iprovalicarb는 포장에서 살균제를 사용하기 시작한 2007년부터의 $EC_{50}$값과 사용하기 전의 $EC_{50}$값 간에 차이가 없었으며, 병원균의 $EC_{50}$값에 의한 분포에서도 저항성균의 발현은 찾아볼 수 없었다. Dimethomorph 역시 포장에서 저항성균이 발현하지는 않았지만, 연도별도 병원균의 $EC_{50}$값이 서서히 상승하고 있는 경향을 보여 주었다. 다른 작용기작을 갖는 metalaxyl과의 교차저항성 관계를 구명하기 위하여 $R^2$값을 조사하였는데, benthiavalicarb, iprovalicarb, imethomorph 각각과 metalaxyl과의 $R^2$값은 0.001, 0.009, 0.069로 매우 낮아 전혀 상관관계가 성립하지 않았다. 같은 계열에 속하는 mandipropamid와 실험에 사용한 세 종류의 살균제 각각의 상관관계를 조사한 결과, 유사한 화학구조를 지니는 benthiavalicarb와 iprovalicarb, 그리고 dimethomorph와 mandipropamid간의 상관관계가 인정되었다. 하지만 동일한 CAA계열의 다른 살균제와는 상관관계가 인정되지 않았다.

Keywords

References

  1. Albert, G., J. Curtze and A. C. Drandarevski (1988) Dimethomorph (CME 151), a novel curative fungicide. Brighton Crop Prot. Conf. Pests Dis. 1988:17-23.
  2. Cohen, Y., A. Baidr and B. T. Cohen (1995) Dimethomorph activity against oomycete fungal plant pathogens. Phytopathology 85:1500-1506. https://doi.org/10.1094/Phyto-85-1500
  3. Davidse, L. C., D. Looijei, L. J. Turkensteen and Van Der Wal (1981) Occurrence of metalaxyl-resistant strains of potato blight in Dutch potato fields. Neth. J. Plant Pathol. 87:65-68. https://doi.org/10.1007/BF01976658
  4. Deahl, K. L., D. A. Inglis and S. P. DeMuth (1993) Testing for resistance to metalaxyl in Phytophthora infestans isolates from north-western Washington. Am. Potato J. 70:779-795. https://doi.org/10.1007/BF02849105
  5. Dowley, L. J. and E. O'Sullivan (1981) Metalaxyl resistant strains of Phytophthora infestans (Mont.) de Bary in Ireland. Potato Res. 24:417-421. https://doi.org/10.1007/BF02357324
  6. Gisi, U. (2002) Chemical control of downey mildews. p 119-159 in: Advances in downey mildew research. P. T. N. Spencer- Phillips, U. Gisi, and A. Lebeda, eds. Kluwer Academic Publishers, Netherlands.
  7. Gisi, U., M. Waldner, N. Kraus, P. H. Dubuis, and H. Sierotzki (2007) Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathology 56:199-208. https://doi.org/10.1111/j.1365-3059.2006.01512.x
  8. Ham, J. H., B. K. Hwang, Y. J. Kim and C. H. Kim (1991) Differential sensitivity to metalaxyl of isolates of Phytophthora capsici from different geographic areas. Korean J. Plant Pathol. 7:212-220.
  9. Jang, H. S., S. M. Lee, S. B. Kim, J. Kim, S. Knight, K. D. Park, D. McKenzie and H. T. Kim (2009) Baseline sensitivity to mandipropamid among isolates of Phytophthora capsici causing Phytophthora blight on pepper. Plant Pathol. J. 25:317-321. https://doi.org/10.5423/PPJ.2009.25.4.317
  10. Jende, G., U. Steiner and H. W. Dehne (2002) Microscopical characterization of fungicidal effects on infection structures and cell wall formation of Phytophthora infestans. In: H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell and H. Lyr eds. Modern fungicide and antifungal compounds III. Bonn, Germany: AgroConcept 83-90.
  11. Kuck, K. H. and P. E. Russell (2006) FRAC: Combined resistant risk assessment. Aspects of Applied Biology 78:3-10.
  12. Matheron, M. E. and M. Porchas (2000) Impact of azoxystrobin, dimethomorph, fluazinam, festyl-Al, and metalaxyl on growth, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 84:454-458. https://doi.org/10.1094/PDIS.2000.84.4.454
  13. Moore, M. S., G. B. Follas, G. C. Hagerty and R. M. Beresford (2008) Carboxylic acid amide (CAA) fungicide resistance prevention strategy. New Zealand Pl. Prot. 61:134-136.
  14. Oh, J. S. and C. H. Kim (1992) Varying sensitivity to metalaxyl of Korean isolates of Phytophthora capsici from red pepper fields. Korean J. Plant Pathol. 8:29-33.
  15. Reuveni, M. (2003) Activity of the new fungicide bethiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grape vines. European J. Plant Pathol. 109:243-251. https://doi.org/10.1023/A:1022836105688
  16. Stein, J. M. and W. W. Kirk (2004) The generation and quantification of resistance to dimethomorph in Phytophthora capsici. Plant Dis. 88:930-934. https://doi.org/10.1094/PDIS.2004.88.9.930
  17. Zhang, X., K. Ryu, J. Kim, J. Cheon and B. Kim (2005) Changes in the sensitivity to metalaxyl, dimethomorph and ethaboxam of Phytophthora infestans in Korea. Plant Pathol. J. 21:33-38. https://doi.org/10.5423/PPJ.2005.21.1.033
  18. Zhu, S., P. Liu, X. Liu, J. Li, S. Yuan and N. Si (2008) Assessing the risk of resistance in Pseudoperonospora cubensis to the fungicide flumorph in vitro. Pest Manag. Sci. 64:255-261. https://doi.org/10.1002/ps.1515
  19. Zhu, S. S., X. L. Liu, Y. Wang, X. H. Wu, P. F. Liu, J. Q. Li, S. K. Yuan and N. G. Si (2007) Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses. Plant Pathology 56:967-975. https://doi.org/10.1111/j.1365-3059.2007.01649.x
  20. 김선보, 이수민, 민지영, 김흥태. (2007) 2005년과 2006년에 채집한 고추 역병균(Phytophthora capsici)의 metalaxyl에 대한 약제 반응. 농약과학회지 11:305-312.
  21. 연초롱, 이수민, 김선보, 민지영, 김흥태. (2008) 국내 고추 역병균의 metalaxyl 저항성 변화 및 metalaxyl 저항성과 고추에 대한 병원성과의 상관관계. 농약과학회지 12:270-276.
  22. 이수민, 신진호, 김선보, 김흥태. (2009) Metalaxyl에 대한 저항성고추 역병균의 특성. 농약과학회지 13:283-289.
  23. 장현철, 정은경, 이윤수, 김병섭. (2003) 강원지역 포장에서 분리한 감자 역병균(Phytophthora infestans)의 metalaxyl에 대한 감수성 변화. 농약과학회지 7:25-31.