Effects of Interruption Layer for Capillary Rise on Salt Accumulation and Kentucky Bluegrass Poa pratensis Growth in Sand Growing Media over the Reclaimed Saline Soil

임해 간척지에서 모래상토 층에 모세관수 차단 층의 도입이 염류 집적과 켄터 키블루그래스 생육에 미치는 영향

  • 라하유 (세벨라스 대학교 농업기술학과) ;
  • 양근모 (단국대학교 생명자원과학대학 녹지조경학과) ;
  • 최준수 (단국대학교 생명자원과학대학 녹지조경학과)
  • Received : 2010.11.16
  • Accepted : 2010.12.11
  • Published : 2010.12.31

Abstract

This research was conducted to determine the effect of interruption layer for capillary rise on the sand based growing media when growing Kentucky bluegrass (Poa pratensis L.) on soil reclamation and saline water irrigation. Growing media profile consists of three layers as top soil of 30 cm, 20 cm of the interruption layer for capillary rise and 10 cm of reclaimed paddy soil. Growing media profile was packed in 30 cm diameter column pots. The top soil was a mixture of sand dredged up from Lake Bhunam Tae Ahn, Korea and peat at the ratio of 95:5 by volume. Bottom part of column was covered with plastic net and the pots were soaked into 5 cm depth saline water reservoir with salinity $3-5\;dS\;m^{-1}$. Kentucky bluegrass was established by sod and irrigated using $2\;dS\;m^{-1}$ saline water ($5.7\;mm\;day^{-1}$) in 3 days interval. The results showed that the largest accumulation of salt in the spring with electrical conductivity in saturated extract (ECe) of $5.4\;dS\;m^{-1}$ and sodium absorption ratio (SAR) 34.0 in growing media without the interruption layer for capillary rise and ECe of $4.6\;dS\;m^{-1}$ and SAR 8.24 at growing media using gravel as the interruption layer for capillary rise material. The interruption layer for capillary rise of gravel and coarse sand reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the growing media. Visual quality of Kentucky bluegrass was higher in growing media with the interruption layer for capillary rise of gravel than no interruption layer by 8.3 compared to 7.9 in rates. The interruption layer for capillary rise of gravel and coarse sand enhanced the visual quality by 4.1 and 4.0%, root length by 50 and 38%, and root dry weight by 35 and 17% of Kentucky bluegrass, and reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the growing media.

본 연구는 임해 간척지와 염분의 농도가 높은 관수조건에서 모세관수의 차단층이 염류집적과 켄터키블루그래스의 생육에 미치는 영향을 알아보고자 수행되었다. 생육지반으로는 표토 30 cm, 차단층 20 cm가 10 cm 두께의 간척지 토양위에 조성되었다. 표토로는 태안군 부남 호에서 준설된 모래가 사용되었으며 유기물은 부피비 5%로 혼합되었다. 30 cm직경의 PVC 주름관을 절단하여 지반구조 용기가 제작되었고 바닥은 PVC망사를 이용하여 토양의 이동을 차단하였다. 용기는 5 cm깊이의 저수조에 설치되었으며 저수조에는 $3-5\;dsm^{-1}$ 염도의 희석 바닷물이 채워졌다. 켄터키블루그래스는 뗏장을 사용하여 조성되었으며 $2\;Sm^{-1}$로 희석된 바닷물이 관수원으로 사용 되었고 일평균 5.7mm의 관수가 3일 간격으로 수행되었다. 차단층을 생략한 지반은 봄철에 염분의 집적이 최대를 보여 토양전기전도도가 $5.4\;dSm^{-1}$에 달하였으며 SAR은 34.0을 보였고 차단층설치구의 토양전기전도도 인 $4.6\;dSm^{-1}$과 SAR 8.24에 비해 현저하게 높은 염의 집적을 보였다. 차단층의 소재별 차이를 볼 때 콩자갈과 조사의 사용 시 토양중 Na농도가 가각 16%와 25% 감소하였고 토양전도도는 7%와 13%감소하였다. 차단층 처리구의 켄터키부루그래스 품질은 평균 가시적 평가 8.3을 보여 차단층을 생략한 처리구의 평균 가시적 평가 7.9 보다 높았다. 콩자갈과 조사 차단층 소재는 차단층을 생략한 경우에 비해 켄터키부루그래스의 가시적 품질을 각각 4.1%, 4.0% 증가 시켰으며, 뿌리의 길이를 50%와 38%, 뿌리의 건중을 35%와 17% 증가 시켰다. 상토층의 Na 함량도 콩자갈과 조사 차단층에 의해 각각 16%와 25% 감소하였으며 토양 전기전도도도 7%와 13% 감소하였다.

Keywords

References

  1. Al-Busaidi, A., T. Yamamoto, M. Inoue, A. E. Eneji, Y. Mori, and M. Irshad. 2008. Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. The 3nd Int. Conf. on Water Resources and Arid Envi. Arab Water Forum.
  2. Austin, R.N. 2005. Chemical reactivity in the marine environment. CHEM. laboratory. USA.
  3. Beard, J.B. 1982. Turfgrass management for golf courses. Burgress Publishing Co. Minneapolis.
  4. Bigelow, C.A., D.C. Bowman, and D.K. Cassel. 2001. Water retention of sand-based putting green mixtures as affected by the presence of gravel sub – layers. Int. Turfgrass Soc. Research J.9:479-486.
  5. Bigelow, C.A., D.C. Bowman, D.K. Cassel, and T.W. Rufty. 2001. Creeping bentgrass response to inorganic soil amendments and mechanically induced subsurface drainage and aeration. Crop Sci. 41(3):797-805. https://doi.org/10.2135/cropsci2001.413797x
  6. Blaney, H.F. and W.D. Criddle. 1952. Determining water requirements in irrigated area from climatological and irrigation data. USDA. SCS-TP 96 Washington, D.C. p.48.
  7. Brown, P. 1987. Azmet evapotranspiration estimates: a tool for improving water management of turfgrass. http://ag.arizona. edu/azmet/et1.htm.
  8. Butler, J.D., P.E. Rieke, and D.D. Minner. 1985. Influnce of water quality of turfgrass. In. V.A. Gibeault and S.T. Cockerham (ed.) Turfgrass water conservation. Publ. No. 21405. Coop. Ext. Serv. Univ. of California. CA.
  9. Carrow, R.N. and R.R. Duncan. 1998. Salt-affected turfgrass sites: assessment and management. Published by John Wiley and Sons, Inc. New Jersey.
  10. Corwin, D.L. and S.M. Lesch. 2003. Application of soil electric conductivity to precisio agriculture: theory, principles, and guidelines. Agron. J. 95:455-471.
  11. Duchaufour, P. 1982. Pedology: Pedogenesis and Classification. George Allen and Unwin, London.
  12. Grattan, S.R., C.M. Grieve, J.A. Poss, P.H. Robinson, D.L. Suarez, and S.E. Benes. 2004. Evaluation of slat-tolerant forages for sequrntialwaer reuse system. I. Biomass production. Agr. Water Manage. 70:109-120. https://doi.org/10.1016/j.agwat.2004.04.010
  13. Grattan, S.R. and C.M. Grieve. 1999. Salinity-mineral relations in horticultural crops. Scientia Horticulturae. 78:124-157.
  14. Gross, J.P. 2008. A Step-by-step guide for using recycled water. An outline of the cost and maintenance practices necessary to manage this valuable resource. USGA. Green Section Record. March-April 2008. p. 2-8.
  15. Hach, C. 1996. Spectrophotometer soil and irrigation water portable laboratory manual. Js/cth 12-1-96.1ED. Printed in USA.
  16. Harivandi, M.A., J.D. Butler, and L.Wu. 1992. Salinity and turfgrass culture. ASA-CSSA-SSSA.667 S. Madion. USA. Turfgrass- agronomy monograph no.32.
  17. Hillel, D. 1990. Environtmental soil physics. Academic Press. Amsterdam. Boston. London.
  18. Horst, G.L. and R.M. Taylor. 1983. Germinantion and initial growth of Kentucky bluegrass in soluble salts. Agron. J. 75:679-681. https://doi.org/10.2134/agronj1983.00021962007500040024x
  19. Huck, M., R.N. Carrow, and R.R. Duncan. 2000. Effluent water: nightmare or dream come true?. USGA Green Section Record, March/April. 38(2):15-29.
  20. Hunt, J.A. and S.W. Baker. 1996. The influence of growing media depths and base construction on moisture retention profiles of sport turf growing medias. J. Sport Turf. Res. Inst. 71:36-41.
  21. Jorenush, M.H. and A.R. Sepaskhah. 2003. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions. Department of Irrigation, College of Agriculture, Shiraz University, 71365, Shiraz, I.R. of, Iran.
  22. Kjelgren, R., L. Rupp, and D. Kilgren. 2000. Water conservation in urban landscapes. Hort. Science 35:1037-1040.
  23. Kütük, C., G. Çaycý, and L.K. Heng. 2004. Effects of increasing salinity and 15N-labelled urea levels on growth, N uptake, and water use efficiency of young tomato plants. Australian Journal of Soil Research 42:345–351. https://doi.org/10.1071/SR02006
  24. Kütük, C., G. Çaycý, and L.K. Heng. 2004. Effects of increasing salinity and 15N-labelled urea levels on growth, N uptake, and water use efficiency of young tomato plants. Australian Journal of Soil Research 42:345–351. https://doi.org/10.1071/SR02006
  25. Lee, G.J., R.N. Carrow, and R.R. Duncan. 2005. Criteria for assessing salinity tolerance of the halophytic turfgrass seashore paspalum. Crop Sci. 45(1):251-258. https://doi.org/10.2135/cropsci2005.0251
  26. Marcum, K.B. 2006. Use of saline and non-potble water in the turfgrass industry; constraints and developments. Agriculture Water Manag. 80:132-146. https://doi.org/10.1016/j.agwat.2005.07.009
  27. Meyer, W.A., and C.R. Funk. 1989. Progress and benefits to humanity from breeding cool season grasses for turf. In Sleper et al. (ed.) Contributions from reading forage and turf grasses. CSSA Spec. Publ. 15. CSSA, Madison, WI. pp.31-48.
  28. Miller, D.E. and W.C. Bunger. 1963. Moisture retention by soil with coarse layers in the profile. Soil Sci. Soc. Am. J. 27:586- 589. https://doi.org/10.2136/sssaj1963.03615995002700050034x
  29. Miller, R.D. 1969. Theory of capillary flow: II. experimental information. Soil Sci. Soc. Am. J. 19:271-275.
  30. Miyamoto, S., A. Chacon, M. Hossain, and I. Martinez. 2005. Soil salinity of urban turf irrigated with saline water I. Spatial Variability. ARC, Texas. El Paso. USA.
  31. Miyamoto, S. and A. Chacon. 2006. Soil salinity of urban turf areas irrigated with saline water II. soil factors. Landscape and Urban Planning J. 77:28-38. https://doi.org/10.1016/j.landurbplan.2004.12.011
  32. Nabati, D.A., R. E. Schmidt, and D.J. Parrish. 1994. Alleviation of salinity stress in kentucky bluegrass by plant growth regulators and iron. J. CSSA. Crop Sci. 34:198-202. https://doi.org/10.2135/cropsci1994.0011183X003400010035x
  33. Pessarakli, M., K.B. Marcum, D.M. Kopee, and Y.L. Qian. 2004. Interactive effect of salinity and primo on the growth of Kentucky bluegrass. Turfgrass and ornamental research report. Univ. of Arizona Coll. USA.
  34. Poss, J.A. and W.B. Russel. 2010. Salt tolerance and canopy reflectance of Kentucky bluegrass cultivars. HortScience 45 (6):952-960.
  35. Prettyman, G. and E.L. McCoy. 1999. Subsurface drainage of modern putting greens. USGA Green Section Record 38(4):17- 22.
  36. Qian, Y.L., S.J. Wilhelm, and K.B. Marcum. 2001. Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Sci. 41(6):1895-1900. https://doi.org/10.2135/cropsci2001.1895
  37. Ravisankar, M., A.T. Reghunath, K. Sathianandan, and V.P. Nampoori. 1988. Effect of dissolved NaCl, MgCl2, and Na2SO4 in seawater on the optical attenuation in the region from 430 to 630 nm. Appl Opt. Sep 15. 27(18):3887-94. https://doi.org/10.1364/AO.27.003887
  38. Ripple, C.D., J. Rubin, and V. Hylckama. 1972. Estimating steadystate evaporation rates from bare soils under conditions of high water table. Geological Survey Water Supply Paper 2019-A. US Geological Survey, Washington
  39. Smets, S.M.P., M. Kuper, J. C. Van Dam, and R.A. Feddes. 1997. Salinization and crop transpiration of irrigated fields in Pakistan's Punjab. Agricultural Water Management J. 3:43-60.
  40. Soil Survey Staff. 1999. The key of soil taxonomy. USDAPusat Penelitian Tanah dan Agroklimat. BPPP. Bogor. Indonesia.
  41. Sonn, K. Y., K.C. Song, and S. J. Jung. 2005. Re-classification of representative saline soils of Korea. Mun Seo Yun Hyong. Proc.
  42. Suplick, M.R., Y.L. Qian, and J.C. Read. 2002. Relative NaCl tolerance of Kentucky bluegrass, Texas bluegrass, and their hybrids. Crop Sci. J. 42:2025-2030. https://doi.org/10.2135/cropsci2002.2025
  43. Sys, C., E. Van-Ranst, and J. Debaveye J. 1991. Land evaluation- principles in land evaluation and crop production calculations. Agricultural Publication GADC. Place du Champ de Mars. 1050 Brussels-Belgium.
  44. Tan, K.H. 1995. Soil sampling, preparation and analysis. The Univ. Georgia. Marcel Dekker, Inc. Hong Kong.
  45. Taylor, D.H., S.D. Nelson, and C.F. Williams. 1993. Sub rootzones layering effects on water retention in sport turf profiles. Agron. J. 85:626-630. https://doi.org/10.2134/agronj1993.00021962008500030020x
  46. Taylor, D.H., D.F. Williams, and S.D. Nelson. 1994. Water retention in golf greens; sub-growing media layering effects. USGA Green Section Rec. 32(1):17-19.
  47. Thompson, R.B., M. Gallardoa, M.D. Fernándezb, L.C. Valdezc, and C. Martínez-Gaitána. 2007. Salinity effects on soil moisture measurement made with a capacitance sensor. Soil Sci. Soc. Am. J. 71:1647-1657. https://doi.org/10.2136/sssaj2006.0309
  48. Turgeon, A.J. 2002. Turfgrass management. 6 th ed. Rentice hall, Englewood Cliffs, NJ. USA.
  49. Tyagi, N.K. 2003. Managing saline and alkaline water for higher productivity. Central Soil Salinity Research Institute, Haryana, India.
  50. USGA, 1989. USGA recommendations for a method of putting green construction. USGA Green Section Staff.
  51. Unger, P.W. 1971. Soil Profile Gravel Layers: II. effect on growth and water use by a hybrid forage sorghum. Soil Sci. Soc. Am. J. 35:980-983. https://doi.org/10.2136/sssaj1971.03615995003500060035x
  52. Unger, P.W. 1971. Soil Profile Gravel Layers: I. Effect on water storage, distribution, and evaporation. Soil Sci. Soc. Am. J. 35:631-634. https://doi.org/10.2136/sssaj1971.03615995003500040041x
  53. Wilhelm, S., S. Alshammary, and Y. Qian. 2010. Establishment, growth and irrigation requirements of Kentucky bluegrass and tall fescue as influenced by two irrigation water source. Research J. of Envi. Sci. 4(5):443-451. https://doi.org/10.3923/rjes.2010.443.451
  54. Yoon, Y.B. and J.S. Lee. 1992. The growth and thatch accumulation of Kentucky bluegrass as affected by cutting management. I. Varietal differences under removing clipping residues. Korea Turfgrass Sci. (1):29-37.