참고문헌
- Bachmann, C. M., T. L. Ainsworth, and Fusina, R. A., 2006. Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes, IEEE Trans. on Geosci. and Remote Sens., 44: 2786-2803. https://doi.org/10.1109/TGRS.2006.881801
- Bachmann, C. M., T. L. Ainsworth, R. A. Fusina, M. J. Montes, J. H. Bowles, D. R. Korwan, and D. B. Gillis, 2009. Bathymetric Retrieval From Hyperspectral Imagery Using Manifold Coordinate Representations, Geoscience and Remote Sensing, IEEE Transactions on, 47: 884-897.
- Belkin, M. and P. Niyogi, 2003. Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 15: 1373-1396. https://doi.org/10.1162/089976603321780317
- Daughtry, C. S. T., E. R. Hunt, and J. E. McMurtrey, 2004. Assessing crop residue cover using shortwave infrared reflectance, Remote Sensing of Environment, 90: 126-134. https://doi.org/10.1016/j.rse.2003.10.023
- Green, A. A., M. Berman, P. Switzer, and M. D. Craig, 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal, Geoscience and Remote Sensing, IEEE Transactions on, 26: 65-74.
- Ham, J., D. D. Lee, S. Mika, and B. Scholkopf, 2004. A kernel view of the dimensionality reduction of manifolds. Paper read at Proceedings of the twenty-first international conference on Machine learning at Banff, Alberta, Canada.
- Jacquemoud S. and F. Baret 1990. PROSPECT: A model of leaf optical properties spectra, Remote Sensing of Environment, 34: 75-91. https://doi.org/10.1016/0034-4257(90)90100-Z
- Kim, W. and M. M. Crawford, 2010. Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines, Geoscience and Remote Sensing, IEEE Transactions on, 48: 4110-4121.
- Kim, W., M. M. Crawford, and S. Lee, 2010. Integrating spatial proximity with manifold learning, International Symposium of Remote Sensing, 2010.
- Ma, L., Crawford, and J. Tian, 2010. Local manifold learning M. M. -Based k-Nearest-Neighbor for Hyperspectral Image Classification, Geoscience and Remote Sensing, IEEE Transactions on, 48:1-11.
- Roweis, S. T. and L. K. Saul, 2000. Nonlinear dimensionality reduction by local linear embedding. Science, 290: 2323-2326. https://doi.org/10.1126/science.290.5500.2323
- Scholkopf, B., A. J. Smola, and K. R. Muller, 1997. Kernel principal component analysis, Lecture notes in computer science, 1327: 583-588.
- Tenenbaum, J. B., V. de Silva, and J. C. Langford, 2000. A global geometric framework for nonlinear dimensionality reduction, IN Science, 290: 2319-2323. https://doi.org/10.1126/science.290.5500.2319
- Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model, Remote Sensing of Environment, 16: 125-141. https://doi.org/10.1016/0034-4257(84)90057-9