내염소성 중공사형 역삼투막(Loose RO)의 제조 및 특성

Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane

  • 김세종 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단) ;
  • 우승문 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단) ;
  • 황해영 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단) ;
  • 고형철 ((주)에어레인) ;
  • 하성용 ((주)에어레인) ;
  • 최호상 (경일대학교 화학공학과) ;
  • 남상용 (경상대학교 나노신소재공학과, 공학연구원, 아이큐브 사업단)
  • Kim, Se-Jong (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Woo, Seung-Moon (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Hwang, Hae-Yong (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Koh, Hyung-Chul (Airrane Co. Ltd) ;
  • Ha, Seong-Yong (Airrane Co. Ltd) ;
  • Choi, Ho-Sang (Dept. of Chemical Engineering, Kyungil University) ;
  • Nam, Sang-Yong (School of Nano and Advanced Materials Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 투고 : 2010.12.09
  • 심사 : 2010.12.20
  • 발행 : 2010.12.30

초록

본 연구에서는 셀룰로오스 트리아세테이트(CTA)를 사용한 loose RO 중공사 막이 상전환 법으로 제조되었고 이들의 수처리 특성이 평가되었다. 1,4-dioxane과 리튬클로라이드(LiCl)는 각각 스킨층 형성제와 기공 형성제로 사용되었다. 제조된 CTA 중공사막의 특성을 알아보기 위하여 전자주사현미경을 통하여 모폴로지를 관찰하였고, 수투과도 및 염 제거율, 내염소성 테스트, 그리고 분획분자량을 측정하였다. CTA/NMP/1,4-dioxane = 18/72/10 (wt%) 에어갭 30 cm의 중공사 분리막의 경우 $20.5L/m^2hr$의 수투과도와 60%의 염 제거율, NaOCl 10,000 ppm/hr의 내염소성 및 약 5,000 Da값의 MWCO를 나타내는 우수한 특성의 loose RO 막이 제조되었다.

In this study, loose RO hollow fiber membranes using CTA polymer were prepared by phase inversion method and their water purification properties were tested. 1,4-dioxane and LiCl was used as a skin layer formation agent and pore formation agent, respectively. Water flux, salt rejection, chlorine resistance, MWCO and membrane morphology were evaluated as a function of the dope composition. When the membrane prepared using the dope solution of CTA/NMP/1,4-dioxane = 18/72/10 (wt%) with air gap of 30 cm, it shows improved RO performance such as $20.5L/m^2hr$ of water flux, 60% of NaCl rejection, 10,000 ppm/hr of chlorine-resistance and around 5,000 Da of MWCO.

키워드

참고문헌

  1. Y. G. Kim, Y. T. Lee, and N. W. Kim, "Interpretation of permeation characteristics and membrane transport models through polyamide reverse osmosis membrane", Membrane Journal, 14, 75 (2004).
  2. H. Y. Hwang, H. C. Koh, and S. Y. Nam, "Preparation and properties of cellulose triacetate membranes for reverse osmosis", Membrane Journal, 17, 227 (2007).
  3. C. Y. Tang, Q. Shiang Fu, A. P. Robertson, C. S. Criddle, and J. O. Leckie, "Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater", Environ. Sci. Technol., 40, 7343 (2006). https://doi.org/10.1021/es060831q
  4. N. W. Kim, "Preparation and characteristics of fouling resistant nanofiltration membranes", Membrane Journal, 14, 44 (2007).
  5. S. Y. Lee, G. Y. Park, G. Amy, S. K. Hong, S. H. Moon, D. H. Lee, and J. W. Cho, "Determination of membrane pore size distribution using the fractional rejection of nonionic and charged macromolecules", J. Membr. Sci., 201, 191 (2002). https://doi.org/10.1016/S0376-7388(01)00729-3
  6. J. W. Cho, G. Amy, and J. Pellegrino, "Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane", J. Membr. Sci., 164, 89 (2000). https://doi.org/10.1016/S0376-7388(99)00176-3
  7. S. N. Gaeta, E. Petrocchi, E. Negri, and E. Drioli, "Chlorine resistance of polypoperazine amide membranes and modules", Desalination, 83, 1 (1991).
  8. I. L. Mello, M. C. Delpech, F. M. B. Coutinho, F. F. M. Albino, and S. M. Santos, "Viscometric study of high-cis polybutadiene in cyclohexane solution at 30${^{\circ}C}$", Polymer Bulletin, 55, 115 (2005). https://doi.org/10.1007/s00289-005-0420-3
  9. M. J. Han and S. T. Nam, "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202, 55 (2002). https://doi.org/10.1016/S0376-7388(01)00718-9
  10. I. C. Kim, H. G. Yun, and K. H. Lee, "Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process", J. Membr. Sci., 199, 75 (2002). https://doi.org/10.1016/S0376-7388(01)00680-9
  11. R. M. Boom, Th. van den Boomgaard, and C. A. Smolders, "Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers. 1. Calculations", Macromolecules, 27, 2034 (1994). https://doi.org/10.1021/ma00086a009
  12. M. J. Kim, S. D. Lee, and K. H. Youm, "Effect of inorganic salt additives on formation of phase-inversion polyethersulfone untrafiltration membrane", Membrane Journal, 12, 75 (2002).
  13. I. Pinnau and B. D. Freeman, "Formation and modification of polymeric membranes", American chemical society, washington, DC Membr. Sci., 744, 1 (1999).
  14. Muller, Dr. Heinz-Joachim and Floyd, Elizabeth, "Modified membrane", Australian patent office AU 2002214802 B2, 7, 25 (2002).
  15. J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation", J. Membr. Sci., 215, 75 (2003). https://doi.org/10.1016/S0376-7388(02)00603-8
  16. M. J. Han, "Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes", Desalination, 121, 31 (1999). https://doi.org/10.1016/S0011-9164(99)00005-3
  17. J. G. Wijmans and R. W. Baker, "The solution-diffusion model: a review", J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  18. T. Kawaguchi and H. Tamura, "Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides", J. Appl. Polym. Sci., 29, 3359 (1984). https://doi.org/10.1002/app.1984.070291113
  19. T. Kawaguchi and H. Tamura, "Chlorine-resistant membrane for reverse osmosis. II. Preparation of chlorine-resistant polyamide composite membranes", J. Appl. Polym. Sci., 29, 3369 (1984). https://doi.org/10.1002/app.1984.070291114