고분자 전해질형 연료전지를 위한 TEOS가 함유된 술폰화 폴리아릴렌에테르술폰 복합막의 제조 및 특성

Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Applications

  • 이근규 (한국화학연구원 에너지소재연구센터) ;
  • 김태호 (한국화학연구원 에너지소재연구센터) ;
  • 황택성 (충남대학교 화학공학과) ;
  • 홍영택 (한국화학연구원 에너지소재연구센터)
  • Lee, Keun-Kyu (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Tae-Ho (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Taek-Sung (Department of Chemical Engineering, Chungnam National University) ;
  • Hong, Young-Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 투고 : 2010.09.27
  • 심사 : 2010.10.07
  • 발행 : 2010.12.30

초록

술폰화 폴리아릴렌에테르술폰(SPAES) 고분자 전해질막은 상온($25^{\circ}C$, 100%RH)에서 우수한 수소이온전도도를 나타내는 반면 고온-저가습($120^{\circ}C$, 48%RH) 조건에서 나피온212 보다 낮은 수소이온전도도 값을 나타낸다. 이러한 단점을 극복하기 위해 수분 보유능력이 뛰어난 tetraethyl orthosilicate (TEOS)를 50, 100, 150, 200% 포함하는 SPAES 복합막을 제조하고 각각의 특성을 고찰하였다. FT-IR 및 TEM을 이용한 분석 결과 복합막 내에서 TEOS가 축합반응을 통하여 Si-O-Si 형태로 연결되었음을 확인하였으나, 입자 형태가 성장되지 않고 oligomer 형태로 이루어져 있음을 확인하였다. 또한 이러한 silicon dioxide 화합물이 복합막 내에서 균일하게 잘 분산되어 있음을 EDS 분석을 통해 확인하였다. TEOS를 함유한 복합막의 경우, TEOS의 수분 유지능력에 의해 높은 온도까지 휘발되지 않는 bound water의 함량이 증가함에 따라 고온에서도 높은 전도도를 유지 할 수 있었다. 이에 따라 TEOS 200% 함유된 복합막(ST200)은 $120^{\circ}C$, 48%RH에서 나피온보다 높은 수소이온 전도도(0.015 S/cm)를 나타내었다. 또한 순수 SPAES (ST0) 단일막 보다 무기물 첨가로 인해 열 안정성이 증가하였음을 알 수 있었다.

A series of composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) were prepared via addition of tetraethyl orthosilicate (TEOS) and solution casting method. The morphological structure, water uptake, proton conductivity of the resulting composite membranes were extensively investigated as function of the content of TEOS. By the sol-gel reaction, TEOS molecules were not completely converted to $SiO_2$ particles, but formed only oligomer-type. Also, EDS confirms that the resulting silicon dioxide was homogeneously distributed in the composite membranes. As the content of TEOS increased, the prepared membranes increased water uptake and proton conductivity at high temperature and low relative humidity condition. In particular, considerably high proton conductivity (0.015 S/cm) at $120^{\circ}C$ and 48%RH was demonstrated in the composite membrane containing 200% TEOS, which is 10 times greater than that of unmodified SPAES membrane. Also, the composite membranes were found to have enhanced thermal stability compared to the unmodified membrane.

키워드

참고문헌

  1. J. M. Bae, I. Honma, M. Murata, T. Yamaoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cell", Solid State Ionics, 147, 189 (2002). https://doi.org/10.1016/S0167-2738(02)00011-5
  2. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, "Developmentand performance characterization of new electro catalysts for PEMFC", J. Power Sources, 106, 206 (2002). https://doi.org/10.1016/S0378-7753(01)01040-0
  3. S. Gottesfeld and T. A. Zawodzinski, "In advances in electrochemical science and engineering", R. C. Alkire, H. Gerischer, D. M. Kolb, and C. W. Tobias, Eds, 5, pp. 195, Wiley-VCH, Weinheim, Germany (1997).
  4. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random(statistical) copolymers: candidates for new proton exchange membranes", Membrane Journal, 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  5. M. K. Mistry, N. R. Choudhury, N. K. Dutta, R. Knott, Z. Shi, and S. Holdcroft, "Novel Organic-Inorganic Hybrids with Increased Water Retention for Elecated Temperature Proton Exchange Membrane Application", Chem. Mater, 20, 6857 (2008). https://doi.org/10.1021/cm801374h
  6. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Investigation of PEMFC operation above 100${^{\circ}C}$ employing perfluorosulfonic acid silicon oxide composite membranes", J. Power Sources, 109, 356 (2002). https://doi.org/10.1016/S0378-7753(02)00086-1
  7. S. Sambandam and V. Ramani, "SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells", J. Power Sources, 170, 259 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.026
  8. L. M. D. Carvalho, A. R. Tan, and A. D. S. Gomes, "Nanostructured membranes base on sulfonated poly(arylene sulfone) and silica for fuel-cell applications", J. Appl. Polym. Sci., 110, 1690 (2008). https://doi.org/10.1002/app.28751
  9. Y. C. Chen, C. C. Tsai, and Y. D. Lee, "Preparation and properties of silylated PTFE/$SiO_{2}$ organic-inorganic hybrids via sol-gel process", J. polym. Sci., Part A, 42, 1789 (2004). https://doi.org/10.1002/pola.20033
  10. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon, "Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications", Membrane Journal, 309, 156 (2008). https://doi.org/10.1016/j.memsci.2007.10.013
  11. Y. Gao, G. P. Robertson, M. D. Guiver, and X. G. Jian, "Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials", J. polym. Sci., Part A, 41, 497 (2003). https://doi.org/10.1002/pola.10601
  12. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells", J. Power Sources, 103, 1 (2001). https://doi.org/10.1016/S0378-7753(01)00812-6
  13. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci., 77, 1250 (2000). https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  14. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochimica Acta, 46, 2401 (2001). https://doi.org/10.1016/S0013-4686(01)00437-6
  15. M.-H. Chen, T.-C. Chiao, and T.-W. Tseng, "Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes", J. Appl. Polym. Sci., 61, 1205 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1205::AID-APP16>3.0.CO;2-W
  16. J. Kerres, W. Cui, and S. Reichle, "New sulfonated engineering polymers via the metalation, Route. 1: Sulfonated poly(ethersulfone) PSU Udel via Metalation-Sulfonation-Oxidation", J. Polym. Sci.: Part A Polymer chemistry, 1, 2421 (1996).
  17. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  18. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Souble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001). https://doi.org/10.1016/S0032-3861(00)00384-0
  19. M. Rodgers, Z. Shi, and S. Holdcroft, "Transport Properties of Composite Membranes Containing Silicon Dioxide and $Nafion^{\circledR}$", J. Membr. Sci., 325, 346 (2008). https://doi.org/10.1016/j.memsci.2008.07.045
  20. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140${^{\circ}C}$ ", J. Electrochem. Soc., 149, 256 (2002).
  21. S. K. Yong and K. A. Mauriktz, "$Nafion^{\circledR}$/ ("organically modified silicate) nanocomposites via polymer in situ sol-gel reaction: Mechanical tensile properties", J. polym. Sci., Part B, 40, 2237 (2002).
  22. B. Ladewig, R. Knott, J. Hill, D. Riches, W. White, J. Martin, C. D. Costa, and G. Q. Lu, "Physical and electrochemical charaterization of nanocomposite membranes of nafion and functionalized silicon oxide", Chem. Mater, 19, 2372 (2007). https://doi.org/10.1021/cm0628698
  23. J. Xi, Z. Wu. X. Qiu, and L. Chen, "Nafion/$SiO_{2}$ hybrid membrane for vanadium redox flow battery", J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  24. W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, and Z. Jiang, "In situ generated silica nanoparticles as por-forming agent for enhanced permeability of cellulose acetate membranes", Membrane Journal, 348, 75 (2010). https://doi.org/10.1016/j.memsci.2009.10.042
  25. C. J. Brinker, "Hydrolysis and condensation of silicates: Effects on structure", J. Noncrystalline solids, 100, 31 (1988). https://doi.org/10.1016/0022-3093(88)90005-1
  26. N. Miyake, J. S. Wainright, and R. F. Savinell, "Evaluation of a sol-gel derived nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications", J. Electrochem. Soc., 148, A898 (2001). https://doi.org/10.1149/1.1383071
  27. I. D. Stefanithis and K. A. Mauritz, "Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid inomer by in situ sol gel reaction. 3. thermal analysis studies", Macromolecules, 23, 2397 (1990). https://doi.org/10.1021/ma00210a043
  28. N. H. Jalani, K. Dunn, and R. Datta, "Synthesis and characterization of $Nafion^{\circledR}$-MO (M=Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells", Electrochimica. Acta, 51, 553 (2005). https://doi.org/10.1016/j.electacta.2005.05.016
  29. M. Aparicico, Y. Castro, and A. Duran, "Synthesis and characterisation of proton conducting styrene-co- methacrylate-silica sol-gel membranes contaning tungstophosphoric acid", Solid State. Ionics, 176, 333 (2005). https://doi.org/10.1016/j.ssi.2004.07.021
  30. M. Aparicico, J. Mosa, and A. Duran, "Hybrid organic-inorganic nanostructured membranes for high temperature proton exchange membranes fuel cells (PEMFC)", J. Sol-Gel. Sci. and Tech., 40, 309 (2006). https://doi.org/10.1007/s10971-006-8370-2
  31. K. Li, G. Ye, J. Pan, H. Zhang, and M. Pan, "Self-assembled nafion/metal oxide nanoparticles hybrid proton exchange membranes", Membrane Journal, 347, 26 (2010). https://doi.org/10.1016/j.memsci.2009.10.002
  32. H. Tang, Z. Wan, M. Pan, and S. P. Jiang, "Selfassembled nafion-silica nanoparticles for elecatedhigh temperatature polymer electrolyte membrane fuel cells", Electrocehm. communi., 9, 2003 (2007). https://doi.org/10.1016/j.elecom.2007.05.024
  33. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, H. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, and J. E. McGrath, "Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membrane (PEM) in fuel cell applications", J. Appl. Polym. Sci., 100, 4595 (2006). https://doi.org/10.1002/app.22803
  34. J.-Y. Park, J.-K. Choi, K.-J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, "Effects of Mixed Casting Solvents on Morphology and Characteristics of Sulfonated Poly(aryl ether sulfone) Membranes for DMFC Application", Membrane Journal, 18, 282 (2008).
  35. Y. S. Kim, L. Dong, M. A. Hickner, T. E. Glass, V. Webb, and J. E. Mcgrath "State of water in disulfonated poly(arylene ether sulfone) copolymer (nafion) and it's effect on physical and electrochemical properties", Macromolecules, 36, 17 (2003).
  36. S. Y. SO, Y. T. Hong, S. C. Kim, and S. Y. Lee, "Control of Water-Channel Structure and State of Water in Sulfonated Poly(arylene ether sulfone)/Diethoxydimethylsilane in-situ Hybridized Proton Conductors and Its Influene on Transport Properties for DMFC Membranes", J. Membr. Sci., 346, 131 (2010). https://doi.org/10.1016/j.memsci.2009.09.029
  37. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, "Performance evaluation of a nafion/silicon oxide hybrid membrane for direct methanol fuel cell", J. Power Sources, 106, 173 (2002). https://doi.org/10.1016/S0378-7753(01)01053-9
  38. K. D. Kreuer, "On the development of proton con ducting materials for technological applications, Solid State, Ionics, 97, 1 (1997). https://doi.org/10.1016/S0167-2738(97)00082-9
  39. K. D. Kreuer, "On the development of proton con ducting polymer membranes for hydrogen and methanol fuel cells", Membrane Journal, 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  40. B. C. H. Steel and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  41. I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, and S. Nomura, "Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes", Solid State Ionics, 162, 237 (2003). https://doi.org/10.1016/S0167-2738(03)00260-1
  42. B. J. Battersby, G. A. Lawrie, A. P. R. Johnston, and Matt Trau, "Optical barcoding of colloidal suspensions: application in genomics, proteomics and drug discovery", Chem. Comm., 1435 (2002).
  43. F. X. Quinn, E. Kampff, G. Smyth, and V. J. Mcbrierty, Water in hydrogels 1, "A study of water in poly(N-vinyl-2-pyrrolidone/methyl methacrylate) copolymer", Macromolecules, 21, 3191 (1988). https://doi.org/10.1021/ma00189a012
  44. L. L. Hench and J. K. West, "The sol-gel process", Chem. Rev., 90, 33 (1990). https://doi.org/10.1021/cr00099a003
  45. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, "Preparation and characterization of crosslinked block and random sulfonated polyimide membranes for fuel cell", Membrane Journal, 4, 241 (2006).
  46. H. N. Ko, J. Y. Park, J. K. Choi, S. U. Kim, H. J. Kim, and Y. T. Hong, "Double-layered polymer electrolyte membrane base on sulfonated poly(aryl ether sulfone)s for direct methanol fuel cells", Membrane Journal, 19, 291 (2009).
  47. J. K. Koh, D. K. Roh, R. Patel, Y. G. Shul, and J. H. Kim, "Preparation and characterization of graft copolymer/$TiO_{2}$ nanocomposite polymer electrolyte membranes", Membrane Journal, 20, 1 (2010).