부식철편에 있어서 철환원능력을 갖춘 세균의 활동에 의한 부식생성물의 변화

A Study on the Change of the Corrosion Products by the Activity of Iron Reducing Bacteria for Corrosion Carbon Steel

  • Lee, So-Yeon (World Cultural Heritage Studies, University of Tsukuba) ;
  • Matsui, Toshiya (World Cultural Heritage Studies, University of Tsukuba) ;
  • Yoshikawa, Hideki (Geological Isolation Research and Developmen Directorate, Japan Atomic Energy Agency)
  • 투고 : 2010.09.06
  • 심사 : 2010.11.08
  • 발행 : 2010.12.20

초록

토양 중에 존재하는 철환원능력을 갖춘 세균은 철제유물의 부식생성물을 에너지원으로 이용할 수 있다. 이러한 세균의 활동은 부식생성물의 변화를 초래하여 유물의 부식을 촉진시키는 부식생성물의 판단을 어렵게 할 수 있다. 본 연구의 목적은 철환원세균이 부식생성물에 일으키는 변화를 조사하여, 철제유물의 부식에 관한 이해를 높이고자 한다. 실험은 출토철제유물을 재현하기 위해서 부식촉진인자 중에서 가용성염류(염화물이온, 황산이온)를 이용하여 부식시킨 철편을 준비하였다. 이 부식철편을 세균이 존재하는 배지에서 42일간 배양하였다. 실험 후, 부식철편의 부식생성물은 SEM, EDS, XRD를 이용하여 관찰, 분석을 실시하였다. 관찰결과, 부식철편이 세균의 활동으로 인해 녹색으로 변화하였으며 부식철편에 판상 결정과 마름모꼴 결정이 새롭게 생성된 사실을 알게 되었다.

Bacteria with ability for iron reduction in the soil can use corrosion products of iron remains as energy source. The activities of this bacteria cause the change of corrosion products. As a result, it can be difficult to identify corrosion products promoting corrosion of iron remains. The purpose of this study, is to investigate the change in corrosion products that bacteria causes and to improve understanding about the corrosion of iron remains. To simulate corroded condition of excavated iron remains, carbon steel corroded by solution of NaCl and $Na_2SO_4$ was prepared. Then the prepared carbon steel was immersed in a liquid medium with bacteria. The incubation period was 42days. After experiment, the carbon steel was analyzed by SEM-EDS, X-ray diffraction method. The result is that the carbon was changed to green because of activity of bacteria and that the plate crystal and lozenge crystal were generated on the corrosion specimen. Also, we confirmed that the activities of bacteria differenciated colors and forms of corrosion products.

키워드

참고문헌

  1. 佐々木英次, "微生物腐食の事例". 溶接学会誌, 64, p6-9, (1995).
  2. 鷲頭直樹, "金属材料の微生物腐食". 材料科学, 35, p271-276, (1998).
  3. 丹治保典, 海野 肇, "微生物が関与する金属腐食の促進". バイオサイエンスとインダストリ一, 58, p237-241, (2000).
  4. 菊池靖志, K.R.スリクマリ一, "金属材料の微生物誘起腐 食.劣化". 鉄と鋼, 88, p34-42, (2002).
  5. 伊藤公夫, "金属材料の腐食に関連する微生物の解析". 高温学会誌, 35, p118-120, (2009).
  6. 西村俊弥, 田中賢逸, 清水義明, "乾湿繰り返し腐食環境 における炭素鋼のさび形成に与える NaClの影響". 鉄と鋼, 81, p1081, (1995).
  7. H. Yoshikawa, S. Lee and T. Matsui, "A sampling method and data evaluation of archaeological samples to support long-term corrosion prediction". Corrosion, 65, p229, (2009).
  8. 土壌微生物研究会, "新編土壌微生物実験法". 養賢堂, p395, (1997).
  9. 江本義理, "文化財を守る". アグネ技術センタ-, p73-74, (1993).
  10. E. Herrero, M.V. Cabanas, M. Vallet-Regi, J.L. Martinez, J.M. Gonzalez-Calbet, "Influence of synthesis conditions on the $\gamma-Fe_{2}O_{3}$ properties". Solid State Ionics, 101-103, p213-219, (1997).
  11. 三沢俊平, 橋本功二, 下平三郎, "鉄さびの生成機構と耐 鋼候性さび層". 防食技術, 23, p18, (1974).
  12. 三沢俊平, "環境と腐食". 色材, 54, p309-319, (1981).
  13. 松永 是, "バイオミネラリゼ〡ションにおける結晶形成制御". 化学, 49, p144-145, (1994).