DOI QR코드

DOI QR Code

선형 트랜스듀서를 이용한 혈관 변형률 영상법

Blood Vessel Strain Imaging Using Linear Array Transducer

  • Ahn, Dong-Ki (Daejin University, Departments of Electronic Engineering) ;
  • Jeong, Mok-Kun (Daejin University, Departments of Electronic Engineering)
  • 투고 : 2010.01.11
  • 심사 : 2010.03.18
  • 발행 : 2010.03.31

초록

뇌졸중 등의 혈관 질병을 진단하기 위해서 혈관 내 초음파(Intravascular Ultrasound:IVUS)영상 기법이 사용되고 있다. 최근에는 혈관 내벽에 붙은 혈전을 탄성 영상법을 이용하여 진단하는 방법들이 연구되고 있다. 그러나 혈관 내 초음파는 혈관 내에 트랜스듀서를 삽입하여야 하므로 진단 방법에 위험성이 있다. 본 논문은 선형 트랜스듀서를 이용하여 혈관 외부에서 데이터를 획득하여 혈관 내벽에 붙은 혈전의 변형률 영상을 얻었다. 혈관 벽의 움직임을 정확하게 측정하기 위하여, 혈관 벽과 수직이 되도록 주사선의 방향을 조향하면서 초음파 데이터를 획득하였다. 초음파 데이터는 기저대역의 복소수 신호로 복조한 뒤 자기상관(autocorrelation)을 이용하여 혈관 벽의 움직임을 계산하여 변형률 영상을 얻었다. 제안한 방법을 플라스틱 기반의 혈관 모사 팬텀을 제작하여 검증하였다. 혈관 모사 팬텀은 혈관에 해당하는 직경 6mm의 실린더 공간에 물을 채우고 벽을 따라 2mm 두께의 부드러운 혈전을 혈관 벽의 내부에 배치하였다. RF 데이터는 상용 초음파 진단기에서 7.5MHz 선형 트랜스듀서를 사용하여 -40도부터 40도까지 1도 간격으로 조향시킨 81개의 스캔라인 데이터를 얻었다. 실험 결과 단단한 배경 팬텀에 인접한 혈전 영역이 더 무른 것으로 관찰되었다. 제안한 방법의 탄성 영상법이 비록 주사선이 혈관 벽에 수직으로 입사하는 영역으로 제한되지만 혈관 변형률 영상법의 유용함을 실험으로 입증하였다.

The intrasvascular ultrasound (IVUS) imaging technique is used to diagnose cerebrovascular diseases such as stroke. Recently, elasticity imaging methods have been investigated to diagnose blood clots attached to blood vessel intima. However, the IVUS imaging technique is an invasive method that requires a transducer to be inserted into blood vessel. In this paper, strain images are obtained of blood clots attached to blood vessel intima with data acquired from outside the blood vessel using a linear array transducer. In order to measure the displacement of blood vessel accurately, experimental data are acquired by steering ultrasound beams so that they can intersect the blood vessel wall at right angles. The acquired rf data are demodulated to the baseband. The resulting complex baseband signals are then processed by an autocorrelation algorithm to compute the blood vessel movement and thereby produce strain image. This proposed method is verified by experiments on a plastic blood vessel mimicking phantom. The efficacy of the proposed method was verified using a home-made blood vessel mimicking phantom. The blood vessel mimicking phantom was constructed by making a 6 mm diameter hollow cylinder inside it to simulate a blood vessel and adhering 2 mm thick soft plaque to the inner wall of the hollow cylinder. The RF data were acquired using a clinical ultrasound scanner (Accuvix XQ, Medison, Seoul. Korea) with a 7.5 MHz linear array transducer by steering ultrasound beams in steps of $1^{\circ}$ from $-40^{\circ}$ to $40^{\circ}$ for a total of 81 angles. Experimental results show that the plaque region near the blood vessel wall is softer than background tissue. Although the imaging region is restricted due to the limited range of angles for which scan lines are perpendicular to the wall, the feasibility of strain imaging is demonstrated.

키워드

참고문헌

  1. H. J. Bae, "Classification and Pathophysiology of Stroke", Journal of Medical Postgraduate, vol. 29, no.2, pp. 68-74, 2001.
  2. D. H. Kim, "Ultrasound Examination of Cervical Vessels", Journal of Korean Society for Clinical Neurophysiology, vol. 9, no. 2, pp. 112-120, 2007.
  3. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi and X. Li, "Elastography: a Quantitative Method for Imaging the Elasticity of Biological Tissues", Ultrasonic Imaging, vol. 13, no. 2, pp. 111-134, 1991. https://doi.org/10.1016/0161-7346(91)90079-W
  4. R. Y. Yoon, S. J. Kwon, M. H. Bae and M. K. Jeong, "Implementation of Strain Imaging Modality in Medical Ultrasound Imaging System", Journal of IEEK, vol. 42, no. 3, pp. 157-166, 2005.
  5. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff and J. L. Gennisson, "Ultra High Speed Imaging of Elasticity", Proc. of IEEE Ultrasonic Symposium, pp. 1811-1820, 2002.
  6. T. Shiina, N. Nitta, E. Ueno and J. C. Bamber, "Real Time Tissue Elasticity Imaging Using the Combined Autocorrelation Method", Journal of Medical Ultrasonics, vol. 29, pp. 119-128, 2002 https://doi.org/10.1007/BF02481234
  7. N. Bom, S. G. Carlier, A. F. W. Van der steen and C. T. Lancee, "Intravascular Scanners", Ultrasound in Medicine and Biology, vol. 26, Supplement 1, pp.s6-s9, 2000. https://doi.org/10.1016/S0301-5629(00)00151-4
  8. R. A. Meyer, "Intravascular Ultrasound Technological Advances and Clinical Applications", Progress in Pediatric Cardiology, vol. 7, issue. 3, pp. 141-153, 1997. https://doi.org/10.1016/S1058-9813(97)00019-2
  9. A. Gronningsaeter, B. A. J. Angelsen, A. Gresli and H. G. Torp, "Blood Noise Reduction in Intravascular Ultrasound Imaging", IEEE Transactions on Ultrasonics Ferroelectrics Frequency Control, vol. 42, no. 2, pp. 200-209, 1995. https://doi.org/10.1109/58.365234
  10. C. L. de Korte, A. F. W. van der Steen, "Intravascular Ultrasound Elastography: an Overview", Ultrasonics, vol. 40, Issues 1-8, pp. 859-865, 2002. https://doi.org/10.1016/S0041-624X(02)00227-5
  11. R. L. Maurice, J. Fromageau, M. R. Cardinal, M. Doyley, E. de Muinck, J. Robb and G. Cloutier, "Characterization of Atherosclerotic Plaques and Mural Thrombi with Intravascular Ultrasound Elastography: a Potential Method Evaluated in an Aortic Rabbit Model and a Human Coronary Artery", IEEE Transaction on Information Technology in Biomedicine, vol. 12, no. 3, pp. 290-298, 2008. https://doi.org/10.1109/TITB.2008.917905
  12. J. Fromageau, P. Delachartre, J. C. Boyer, R. E. Guerjouma and G. Gimenez, "Modeling and Measurement of Cryogel Elasticity Properties for Calibrating of IVUS Elasticity Images", IEEE Ultrasonic Symposium, pp. 1821-1824, 2000.
  13. R. A. Baldewsing, C. L. de Korte, F. Mastik, J. A. Schaar and A. F. W. van der Steen, "Comparison of Finite Elements Model Elastograms and IVUS Elastograms Acquired from Phantoms and Arteries", IEEE Ultrasonic Symposium, pp. 1921-1924, 2002.
  14. Hansen HHG, Lopata RGP and de Korte CL, "Noninvasive Carotid Strain Imaging Using Angular Compounding at Large Beam Steered Angles: Validation in Vessel Phantoms", IEEE Transactions on Medical Imaging, vol. 28, no. 6, pp. 872-880, 2009. https://doi.org/10.1109/TMI.2008.2011510
  15. A. Macovski, "Medical Imaging Systems", Prentice Hall, pp. 204-216, 1983.
  16. O. T. von Ramm, S. W. Smith, "Beam Steering with Linear Arrays", IEEE Transaction Biomedical Engineering, vol. BME-30, no. 8, pp. 438-452, 1983. https://doi.org/10.1109/TBME.1983.325149
  17. M. K. Jeong, S. J. Kwon and M. H. Bae, "Real-time Implementation of Medical Ultrasound Strain Imaging System", Journal of Korean Society for Nondestructive Testing, vol. 28, no. 2, pp.101-111, 2008.
  18. M. K. Jeong, S. J. Kwon, "Enhanced Strain Imaging Using Quality Measure", Journal of Acoustical Society of Korea, vol. 27, no. 3E, pp. 84-94, 2008.
  19. R. Y. Yoon, S. J. Kwon, M. H. Bae and M. K. Jeong, "Improved Ultrasonic Elasticity Imaging with Center Frequency Estimation and Global Shift Compensation", Proc. of IEEE Ultrasonic Symposium, pp. 1278-1281, 2006.
  20. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, "A Time Efficient and Accurate Strain Estimation Concept for Ultrasonic Elastography Using Iterative Phase Zero Estimation", IEEE Transactions on Ultrasonics Ferroelectrics Frequency Control, vol.46, pp. 1057-1067, 1999. https://doi.org/10.1109/58.796111
  21. G. J. Lee, D. H. Park, T. M. Shin and J. B. Seo, "Analysis of Properties and Phantom Design Based on Plastic Hardener and Softener for Ultrasonic Imaging", Journal of Biomedical Engineering Research, vol. 29, no. 4, pp. 302-306, 2008.
  22. D. K. Ahn, M, K. Jeong, "Ultrasonic Phantom Based on Plastic Material for Elastography", Journal of Korean Society for Nondestructive Testing, vol.29, no. 4, pp. 368-373, 2009.

피인용 문헌

  1. Medical Ultrasonic Elasticity Imaging Techniques vol.32, pp.5, 2012, https://doi.org/10.7779/JKSNT.2012.32.5.573