DOI QR코드

DOI QR Code

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder

폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구

  • Lee, Dae-Hyuk (Dept. of Architectural Environmental Engineering, Hanyang University) ;
  • Yoon, Sang-Chen (Dept. of Architectural Engineering, GyeongJu University) ;
  • Jeong, Yong (Sampyo Co., Ltd., Technology Research Center) ;
  • Shin, Jae-Kyung (Sampyo Co., Ltd., Technology Research Center) ;
  • Jee, Nam-Yong (Dept. of Architectural Engineering, Hanyang University)
  • 이대혁 (한양대학교 건축환경공학과) ;
  • 윤상천 (경주대학교 건축학부) ;
  • 정용 ((주)삼표 기술연구소) ;
  • 신재경 ((주)삼표 기술연구소) ;
  • 지남용 (한양대학교 건축공학부)
  • Received : 2009.10.30
  • Accepted : 2010.02.06
  • Published : 2010.04.30

Abstract

The purpose of this study is to provide preliminary data on chloride diffusion of lightweight aggregate concrete containing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated according to the NT BUILD 492. Diffusion coefficient of SLG and CLG were higher than that of CG concrete, but the difference was not significant. Also, chloride diffusion coefficient data indicated that it was highly affected by water-binder ratio, and it decreased with the decrease in waterbinder ratio. The admixture substitution of FA15% was effective in decreasing the diffusion coefficient only with water-binder ratio of 0.4 while admixture substitution of FA10+BFS20% was effective with all levels of water-binder ratio. The result of study shows lightweight aggregate concrete containing crushed stone-powder has slightly higher chloride diffusion coefficient than CG concrete, but the difference is not significant such that it can be overcome by adjusting water-binder ratio and admixture substitution. In addition, the data indicate the chloride diffusion coefficient of lightweight aggregate concrete can be estimated from the strength of lightweight aggregate.

이 연구에서는 폐석분 활용 경량골재 콘크리트의 염화물 확산에 대한 기초자료를 제공하고자 하였다. 이에 콘크리트의 골재를 부순골재(CG), 폐석분을 활용한 단일 입도의 비조립형 경량골재(SLG), 연속 입도의 비조립형 경량 골재(CLG), 물결합재비 0.4, 0.5, 0.6, 결합재 FA, BFS로 실험을 실시하였다. 염화물 확산 계수는 NT BUILD 492준하여 시험 후 산출하였으며 SLG와 CLG콘크리트의 확산계수는 CG콘크리트보다 다소 크게 나타났으나 큰 차이는 없었다. 또한 염화물 확산계수는 물결합재비에 의한 영향이 크며 물결합재비가 낮을수록 감소하는 것으로 나타났고 혼화재 치환은 FA15%의 경우 물결합재비 0.4에서만 감소를 나타내는데 비해 FA10 + BFS20% 모든 수준에서 감소하는 것으로 나타나 더 적합한 것으로 사료된다. 경량골재 콘크리트의 염화물 확산을 분석한 결과, 폐석분 활용 경량골재 콘크리트가 CG콘크리트에 비하여 염화물 확산 계수가 크지만 큰 차이는 없으며 물결합재비 및 혼화재 치환으로 저항성을 향상 시킬 수 있다. 또한 경량골재에 대해 강도에 따른 염화물 확산 계수를 추정 할 수 있다.

Keywords

References

  1. Yoon, S. C., Jee, N. Y., Roh, S. Y., and Cho, H. B., “The Comparison on Code of Light-weight Aggregate in the Inside and Outside Country,” International Symposium on Architectural Interchanges in Asia, Vol. 2, 2008, pp. 924-929.
  2. Mehta, K. K. and Monteiro, P. J. M., Concrete : Microstructure, Properties, and Materials Third Edition, McGraw-Hill, New York, 2006, pp. 450-456.
  3. Mindess, S., Young, J. F., and Darwin, D., Concrete Second Edition, Pearson Education, 2003, pp. 493-499.
  4. Nordtest Method, NT BUILD 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-steady-state Migration Experiments, Nordtest, Finland, 1999.
  5. 한국콘크리트학회, 콘크리트 혼화재료, 기문당, 1997, pp. 201-205.
  6. Leng, F., Naiqian, F., and Lu, X., “An Experimental Study on the Properties of Resistance to Diffusion of Chloride Ions Fly Ash and Blast Furnace Slag Concrete,” Cement and Concrete Research, Vol. 30, Issue 6, 2000, pp. 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  7. Chandra, S. and Berntsson, L., Lightweight Aggregate Concrete: Science, Technology and Applications, Noyes Publications, 2003, pp. 168-190.
  8. Lo, T. Y., Tang, W. C., and Cui, H. Z., “The Effects of Aggregate Properties on Lightweight Concrete,” Building and Environment, Vol. 42, Issue 8, 2007, pp. 3025-3029. https://doi.org/10.1016/j.buildenv.2005.06.031