DOI QR코드

DOI QR Code

Failure Behavior of FRP RC Beams without Shear Reinforcements

전단 보강이 없는 FRP RC보의 파괴 거동

  • 이재훈 (영남대학교 건설시스템공학과) ;
  • 손현아 (한빛엔지니어링 구조부) ;
  • 신성진 (영남대학교 건설시스템공학과)
  • Received : 2009.08.24
  • Accepted : 2009.10.19
  • Published : 2010.04.30

Abstract

In order to substitute FRP bar for steel bar in new structures, it is necessary to establish a reliable design code. But relatively little research has been conducted on the material in Korea. So, a total of 22 beam specimens (18 GFRP reinforced concrete and 4 conventional steel reinforced concrete) were constructed and tested. In the first phase of the experiment, it was carried out to observe flexural behavior, and collect deflection and crack data. In order to eliminate of the uncertainty by the shear reinforcements and induce flexural failure mode, any stirrup were not used and only shear span-depth ratio were adjusted. However, almost beams were broken by shear and the ACI 440.1R, CSA S806, which were used to design test beams, showed considerable deviation between prediction and test results of shear strengths. Therefore in the second phase of the study, shear failure modes and behavior were observed. A standard specimen had dimensions of 3,300 mm long ${\times}$ 800 mm wide ${\times}$ 200 mm effective depth. Clear span and shear span were 2,800 mm, 1,200 mm respectively. Control shear span-depth ratio was 6.0. Four-point bending test over simple support was conducted. Variables of the specimens were concrete compressive strength, type and elastic modulus of reinforcement, shear span-depth ratio, effective reinforcement ratio, the effect of bundle placing method and cover thickness.

FRP bar를 철근 대체제로 활용하기 위해서는 설계 기준의 확립이 시급하나 국내에서는 이 소재에 대한 기초 연구가 부족한 상황이다. 그러므로 2차에 걸쳐 전단보강이 없는 18개의 FRP RC와 4개의 기존 RC 실험체의 거동을 관찰하였다. 1차 실험은 휨 파괴 거동과 사용성 항목의 계측 자료 수집을 목적으로 시작되었다. 휨파괴를 유도하기 위하여 전단배근을 강화하는 대신 그로 인한 거동의 불확실성을 배제하기 위하여 전단지간비만을 조정하여 휨파괴를 유도하고, 전단배근을 사용하지 않기로 하였다. 실험 결과 거의 모든 실험체는 전단파괴 되었으며 실험계획에 적용한 ACI 440.1R과 CSA S806의 전단 강도식이 실제와 큰 편차가 있음을 확인하였다. 1차 실험의 결과를 근거로 2차 실험에서는 전단파괴거동을 집중적으로 관찰하였다. 표준 실험체의 제원은 길이 3,300 mm폭 ${\times}$ 800 mm ${\times}$ 유효깊이 200 mm, 순지간 2,800 mm, 전단지간 1,200 mm로 전단지간비는 6.0이며, 단순지지 조건으로 4점 재하실험을 수행하였다. 검토 변수에는 콘크리트 압축강도, 보강근의 종류 및 탄성계수, 전단지간비, 유효보강비, 다발 배근의 영향, 피복두께의 영향이 포함된다.

Keywords

References

  1. 한국건설기술연구원, “FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발,” 1차년도 보고서, 공공기술연구회, 2003, 692 pp.
  2. Nawy, E. G. and Neuwerth, G. E., “Fiberglass Reinforced Concrete Slabs and Beams,” Journal of the Structural Division, ASCE, Vol. 103, No. ST2, February, 1977, pp. 421-440.
  3. Nanni, A., “Flexural Behavior and Design of RC Members Using FRP Reinforcement,” Journal of Structural Engineering, ASCE, Vol. 119, No. 11, November, 1993, pp. 3344-3359. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3344)
  4. ACI Committee 440, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-06), American Concrete Institute, Farmington Hills, Michigan, 2006, 44 pp.
  5. Canadian Standard Association, Design and Construction of Building Components with Fibre-Reinforced Polymers(CSA S806-02), Rexdale, Ontario, Canada, 2002, 177 pp.
  6. ISIS Canada, Reinforcing Concrete Structures with Fibre Reinforced Polymers (ISIS-MO3-01), ISIS Canada Corporation, Winnipeg, Manitoba, 2001, 81 pp.
  7. 한국콘크리트학회, “FRP 보강근을 사용한 콘크리트 구조물 설계 및 시공지침(안),” 한국콘크리트학회 봄 학술대회, 2008, 67 pp.
  8. 한국건설기술연구원, “FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발,” 3차년도 보고서, 공공기술연구회, 2005, 617 pp.
  9. ASCE-ACI Joint Committee 426, “The Shear Strength of Reinforced Concrete Members,” Journal of Structural Division, ASCE, Vol. 99, No. ST6, 1973, pp. 1091-1187.
  10. El-Salakawy, E. F. and Benmokrane, B., “Serviceability of Concrete Bridge Deck Slabs Reinforced with Fiber-Reinforced Polymer Composite Bars,” ACI Structural Journal, Vol. 101, No. 5, 2004, pp. 727-736.
  11. Michaluk, C. R., Rizkalla, S. H., Tadros G., and Benmokrane, B., “Flexural Behavior of One-way Concrete Slabs Reinforced by Fiber Reinforced Plastic Reinforcements,” ACI Structural Journal, Vol. 95, No. 3, 1998, pp. 353-365.
  12. Benmokrane, B., Chaallal, O., and Masmoudi, R., “Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars,” ACI Structural Journal, Vol. 93, No. 1, 1996, pp. 46-55.
  13. Vijay, P. V. and GangaRao, H. V. S., “Bending Behavior and Deformability of Glass Fober-Reinforced Polymer Reinforced Concrete Members,” ACI Structural Journal, Vol. 98, No. 6, 2001, pp. 834-842.
  14. El-Sayed, A. K., El-Salakawy, E. F., and Benmokrane, B., “Shear Strength of FRP-Reinforced Concrete Beams without Transverse Reinforcement,” ACI Structural Journal, Vol. 103, No. 2, 2006, pp. 235-243.
  15. Matta, F., Nanni, A., Hernandez, T. M., and Benmokrane, M., “Scaling of Strength of FRP Reinforced Concrete Beams without Shear Reinforcement,” Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) Zurich, Switzerland, 2008, pp. 1-6.
  16. Trueyen, A. K. and Frosch, R. J., “Shear Tests of FRP-Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, Vol. 99, No. 4, 2002, pp. 427-434.

Cited by

  1. Shear Strength Prediction of FRP RC Baem without Shear Reinforcements vol.22, pp.3, 2010, https://doi.org/10.4334/JKCI.2010.22.3.313