DOI QR코드

DOI QR Code

Analytic study on lead and cadmium in copper contained carbon materials

구리를 함유한 탄소소재의 납 및 카드뮴 분석에 관한 연구

  • Choi, Zel-Ho (Test & Standardization Center, Korea Institute of Ceramic Eng. & Tech.)
  • 최철호 (한국세라믹기술원 시험표준센터)
  • Received : 2010.10.01
  • Accepted : 2010.11.05
  • Published : 2010.12.31

Abstract

Quantitative analytical condition for lead and cadmium in copper contained carbon materials using solvent extraction followed by inductively coupled plasma-atomic emission spectrometry was studied. Copper contained carbon samples were dissolved by nitric acid-perchloric acid digestion. Lead and cadmium were determined after separation with KCN masked copper by an dithizone-chloroform solvent extraction. Recovery efficiency of analyte elements was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Lead and cadmium were quantitatively determined without influence of sample matrix, by applying it procedure to artifact sample.

용매추출과 ICP-AES를 이용하여 구리와 탄소가 주성분인 탄소소재에 함유된 납 및 카드뮴을 정량하기 위한 조건을 연구하였다. 구리성분은 납 및 카드뮴 정량에 방해를 하므로 potassium cyanide로 masking한 다음 dithizone을 가하여 납 및 카드뮴을 Pb- 또는 Cd-dithizone 착물을 형성한 다음 chloroform으로 추출하여 측정하였다. 납 및 카드뮴에 대한 측정 회수율이 우수하였고, 방해를 일으키는 매질원소를 효율적으로 제거할 수 있었다. 납 및 카드뮴 화합물이 첨가된 시험기준 물질에 대한 용매추출시험에서 matrix의 영향을 받지 않고 정량하였다.

Keywords

References

  1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, "C60: Buckminsterfullerene", Nature 318 (1985) 162. https://doi.org/10.1038/318162a0
  2. S. Ijima, "Helical microtubules of graphitic carbon", Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
  3. W. deHeer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro and D. Ugarte, "Aligned carbon nanotube films: production and optical and electronic properties", Science 268 (1995) 845. https://doi.org/10.1126/science.268.5212.845
  4. H. Dai, E.W. Wong and C.M. Liber, "Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes", Science 272 (1996) 523. https://doi.org/10.1126/science.272.5261.523
  5. BS EN 1122 "Plastics - determination of cadmium - wet decomposition".
  6. ASTM D 4004-93, "Standard test methods for rubber - determination of metal content by flame atomic absorption (AAS) analysis".
  7. KS M 3210, "Plastics-Determination of cadmium-Wet decomposition method".
  8. J. Minczewski, J. Chwastowska and R. Dybczynski, "Separation and preconcentration methods in inorganic trace analysis", Trends Anal. Chem. 2(6) (1983) 143. https://doi.org/10.1016/0165-9936(83)87039-3
  9. K. Kazunobu, "Method of quantitative inorganic analysis", Interscience, New York(1963).
  10. F. Amore, "Determination of cadmium, lead, thallium, and nickel in blood by atomic absorption spectrometry", Anal. Chem. 46(11) (1974) 1597. https://doi.org/10.1021/ac60347a060
  11. J.D. Kinrade and J. Cvan Loon, "Solvent extraction for use with flame atomic absorption spectrometry", Anal. Chem. 46(13) (1974) 1894. https://doi.org/10.1021/ac60349a003
  12. S. Bajo and A. Wyttenbach, "Liquid-liquid extraction of cadmium with diethyldithiocarbamic acid", Anal. Chem. 49(1) (1977) 158. https://doi.org/10.1021/ac50009a046
  13. L. Danielsson, B. Magusson, S. Westerlund and K. Zhang, "Trace metal determinations in estuarine waters by electrothermal atomic absorption spectrometry after extraction of dithiocarbamate complexes into freon", Anal. Chim. Acta 144 (1982) 183. https://doi.org/10.1016/S0003-2670(01)95531-X
  14. B.M. Smith and M.B. Griffiths, "Determination of lead and antimony in urine by atomic-absorption spectroscopy with electrothermal atomisation", Analyst 107 (1982) 253. https://doi.org/10.1039/an9820700253
  15. J.M. Lo, J.C. Yu, F.I. Hutchison and C.M. Wal, "Solvent extraction of dithiocarbamate complexes and backextraction with mercury(II) for determination of trace metals in seawater by atomic absorption spectrometry", Anal. Chem. 54(14) (1982) 2536. https://doi.org/10.1021/ac00251a029
  16. R.W. Dabeka, "Graphite-furnace atomic absorption spectrometric determination of lead and cadmium in foods after solvent extraction and stripping", Anal. Chem. 51(7) (1979) 902. https://doi.org/10.1021/ac50043a028
  17. A. Mizuike, "Enrichment techniques for indorganic trace analysis", Springer Verlag, Berlin (1983).
  18. R.A. Vanderpool and W.T. Buckley, "Liquid-liquid extraction of cadmium by sodium diethyldithiocarbamate from biological matrixes for isotope dilution inductively coupled plasma mass spectrometry", Anal. Chem. 71(3) (1999) 652. https://doi.org/10.1021/ac980538b
  19. T. Kato, S. Nakamura and M. Morita, "Determination of nickel, copper, zinc, silver, cadmium and lead in seawater by isotope dilution inductively coupled plasma mass spectrometry", Anal. Sci. 6(4) (1990) 623. https://doi.org/10.2116/analsci.6.623
  20. H. Itabashi, M. Yoshida and H. Kawamoto, "Kinetically controlled separation of cadmium (II) from zinc (II) with dithizone in the presence of nitrilotriacetic acid", Anal. Sci. 17(11) (2001) 1301. https://doi.org/10.2116/analsci.17.1301
  21. J. Pijk, J. Hosta and J. Gillis, "Proceedinds of the international symposium on microchemistry", Birmingham, london, Pergamon press (1960) 48.