Optimal Life Cycle Cost Design of a Bridge

교량의 생애주기비용 최적설계

  • Park, Jang-Ho (Division of Environmental, Civil and Transportation Engineering, Ajou University) ;
  • Shin, Yung-Seok (Division of Environmental, Civil and Transportation Engineering, Ajou University)
  • 박장호 (아주대학교 공과대학 환경건설교통공학부) ;
  • 신영석 (아주대학교 공과대학 환경건설교통공학부)
  • Received : 2010.07.15
  • Accepted : 2010.11.29
  • Published : 2010.12.31

Abstract

The importance of the life cycle cost (LCC) analysis for bridges has been recognized over the last decade. However, it is difficult to predict LCC precisely since the costs occurring throughout the service life of the bridge depend on various parameters such as design, construction, maintenance, and environmental conditions. This paper presents a methodology for the optimal life cycle cost design of a bridge. Total LCC for the service life is calculated as the sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The optimization method is applied to design of a bridge structure with minimal cost, in which the objective function is set to LCC and constraints are formulated on the basis of Korean Bridge Design Code. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on damage probabilities to consider the uncertainty of load and resistance. Repair and rehabilitation cost is determined using load carrying capacity curves and user cost includes traffic operation costs and time delay costs. The optimal life cycle cost design of a bridge is performed and the effects of parameters are investigated.

최근 들어 교량과 같은 구조물에 대한 생애주기비용(Life Cycle Cost, LCC) 분석의 중요성이 점차 커지고 있다. 그러나 교량의 공용수명 동안 발생할 수 있는 생애주기비용은 설계 및 시공조건 그리고 사용환경에 따라 많은 불확실성을 내포하고 있기 때문에 정확히 예측하기 힘들다. 본 논문에서는 교량의 생애주기비용 최적설계를 위한 설계방법을 제시하였다. 교량의 총생애주기비용은 초기비용, 손상비용 유지관리비용, 보수/보강비용, 사용자비용, 해제/폐기비용의 합으로 산정하였다. 생애주기비용을 목적함수로 하고 도로교설계기준을 제약조건으로 최적화를 수행하였다. 초기비용은 종합불가정보 및 참고자료를 근거로 산출하였으며, 하중 및 부재에 대한 불확실성을 고려하기 위해 손상확률의 개념을 도입하여 손상비용을 산출하였다. 교량의 내하율곡선을 이용하여 교량의 보수/보강 비용을 추정하였으며, 차량운행비용과 시간지연비용으로부터 사용자비용을 산정하였다. 이로부터 교량에 대한 생애주기비용 최적설계를 수행하고 주요인자들에 대한 영향을 살펴보았다.

Keywords

References

  1. J. De Brito and F.A. Branco, "Bridge management policy using cost analysis", Proc. Institution of Civil Engineers, Structures and Buildings, pp. 431-439, 1995.
  2. D.M. Frangopol and K.Y. Lin, "Life-cycle cost design of deterioration structures", Journal of Structure Engineering, ASCE, Vol. 123, pp. 1390-1401, 1997. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)
  3. J.H. Park and Y.S. Shin, "Examination of value engineering for bridge superstructures using Analytic Hierarchy Process", Journal of Korean Society of Safety, Vol. 24, pp. 79-85, 2009.
  4. Y.S. Shin, J.H. Park and D.H. Ha, "Optimal Design of a Steel Box Girder Bridge Considering Life Cycle Cost", KSCE Journal of Civil Engineering, Vol. 13, pp. 433-440, 2009. https://doi.org/10.1007/s12205-009-0433-9
  5. H. Hugh, NCHRP REPORT 483 - Bridge Life-Cycle Cost Analysis, Transportation Research Board of the National Academies, 2003.
  6. H.M. Koh, Y.G. Kim, D.S. Kim and D.G. Hahm, "Life-cycle cost minimization of bridges with earthquake damage estimation", Proc. Korea Society of Civil Engineers Symposium, pp. 1131-1135, 2001.
  7. Korea Infrastructure Safety and Technology Corporation, An enhanced strategy for infra facilities safety management system based on LCC concept, Final report to Korea Road & Transportation Association, 2001.
  8. Korea Infrastructure Safety and Technology Corporation, Method for extension of service life of road bridges, Final report to Korea Road & Transportation Association, 2000.
  9. C.F. Berthelot, G.A. Sparks, T. Blomme, L. Kajner and M. Nickeson, "Mechanistic probabilistic vehicle operating cost model", Journal of Transportation Engineering, ASCE, Vol. 122, pp. 337-341, 1996. https://doi.org/10.1061/(ASCE)0733-947X(1996)122:5(337)
  10. J.R. Kayser and A.S. Nowak, "Capacity loss due to corrosion in steel girder bridges," Journal of Structural Engineering, ASCE, Vol. 115, pp. 992-1006, 1989.
  11. S.Y. Bojidar, Maturing management for aging bridges, New York City, Structural Engineering for meeting urban transportation challenges, 2000.
  12. E. Rosenblueth, "Optimum reliabilities and optimum design", Structural Safety, Vol. 3, pp. 69-83, 1986. https://doi.org/10.1016/0167-4730(86)90009-3
  13. Korea Road & Transportation Association (KRTA), Korean Bridge Design Code, 2005.
  14. O.J. Koskito and B.R. Ellingwood, "Reliability based optimization of plant precast concrete structures", Journal of Structure Engineering, ASCE, Vol. 123, pp. 298-304, 1997. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(298)
  15. A. Haldar and S. Mahadevan, Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, Inc., 2000.