Identification of the Housekeeping Genes Using Cross Experiments via in silico Analysis

  • 투고 : 2010.11.12
  • 발행 : 2010.12.31

초록

For sensitive and accurate gene expression analysis, normalization of gene expression data against housekeeping genes is required. There are conventional housekeeping gene (e.g. ACT) that primarily function as an internal control of transcription. In this study, we performed an in silico analysis of 278 rice gene expression samples (GSM) in order to identify the gene that is most consistently expressed. Based on this analysis, we identified novel candidate housekeeping genes that displayed improved stability among the cross experimental conditions. Furthermore four of the most conventional housekeeping genes were included in our 30 other housekeeping genes among the most stable genes. Therefore, these 30 genes can he used to normalize transcription results in gene expression studies on rice at a broad range of experimental conditions.

키워드

참고문헌

  1. Arabidopsis Genome lnitiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. https://doi.org/10.1038/35048692
  2. Andersen, C. L., J.L. Jensen and T.F. Orntoft 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64: 5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  3. Bommer, U. and B. Thiele. 2004. The translationally controlled tumour protein (TCTP). The International Journal of Biochemistry & Cell Biology 36: 379-385. https://doi.org/10.1016/S1357-2725(03)00213-9
  4. Brunner, A., I. Yakovlev and S. Strauss. 2004. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology 4: 14. https://doi.org/10.1186/1471-2229-4-14
  5. Bustin, S. A., V. Benes, T. Nolan, and M. W. Pfaffl. 2005. Quantitative real-time RT-PCR--a perspective. J. Mol. Endocrinol 34: 597-601. https://doi.org/10.1677/jme.1.01755
  6. Bustin, S. A. and S. Dorudi. 1998. Molecular assessment of tumour stage and disease recurrence using PCR-based assays. Mol. Med. Today 4: 389-396. https://doi.org/10.1016/S1357-4310(98)01324-0
  7. Bustin, S. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol 25: 169-193. https://doi.org/10.1677/jme.0.0250169
  8. Bustin, S. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol 29: 23-39. https://doi.org/10.1677/jme.0.0290023
  9. Cans, C., B. J. Passer, V. Shalak, V. Nancy-Portebois, V Crible, N. Amzallag, D. Allanic, R. Tufino, M. Argentini, D. Moras, G. Fiucci, B. Goud, M. Mirande, R. Amson and A. Telerman. 2003. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc. Natl. Acad. Sci. U.S.A 100: 13892-13897. https://doi.org/10.1073/pnas.2335950100
  10. Chitpatima, S. T., S. Makrides, R. Bandyopadhyay and G. Brawerma, 1988. Nucleotide sequence of a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res. 16: 2350. https://doi.org/10.1093/nar/16.5.2350
  11. Chuaqui, R. F., R. F. Bonner, C. J. M. Best, J. W. Gillespie, M. J. Flaig, S. M. Hewitt, J. L. Phillips, D. B. Krizman, M. A. Tangrea, M. Ahram, W. M. Linehan, V. Knezevic and M. R. Emmert-Buck. 2002. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32: 509-514. https://doi.org/10.1038/ng1034
  12. Czechowski, T., R. P. Bari, M. Stitt, W. Scheible, and M. K. Udvardi. 2004. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 38: 366-379. https://doi.org/10.1111/j.1365-313X.2004.02051.x
  13. Dheda, K., J. F. Huggett, S. A. Bustin, M. A. Johnson, G. Rook and A. Zumla. 2004. Valídation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques 37: 112-114, 116, 118-119.
  14. Edgar, R., M. Domrachev and A. E. Lash. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207-210. https://doi.org/10.1093/nar/30.1.207
  15. Gachon, C., A. Mingam and B. Charrier. 2004. Real-time PCR: what relevance to plant studies? Journal of Experimental Botany 55: 1445-1454. https://doi.org/10.1093/jxb/erh181
  16. Goidin, D., A. Mamessier, M. J. Staquet, D. Schmitt and O. Berthier-Vergnes. 2001. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in ínvasive and noninvasive human malanoma cell subpopulations. Anal. Biochem. 295: 17-21. https://doi.org/10.1006/abio.2001.5171
  17. Jain, M. 2009. Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Science 176: 702-706. https://doi.org/10.1016/j.plantsci.2009.02.001
  18. de Jonge, H.J.M., R. S. N. Fehrmann, E. S. J. M. dc Bont, R. M. W. Hofstra, F. Gerbens, W. A. Kamps, E. G. E. de Vries, A. G. J. van der Zee, G. J. te Meerman and A. ter Elst. 2007. Evidence Based Selection of Housekeeping Genes. PLoS ONE 2: e898. https://doi.org/10.1371/journal.pone.0000898
  19. Kim, B., H. Nam, S. Kim, S. Kim, Y. Chang. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol. Lett. 25: 1869-1872. https://doi.org/10.1023/A:1026298032009
  20. Lee, P.D., R. Sladek, C. M. Greenwood, T. J. Hudson. 2002. Control Genes and Variability: Absence of Ubiquitous Reference Transcripts in Diverse Mammalian Expression Studies. Genome Research 12: 292-297. https://doi.org/10.1101/gr.217802
  21. Lorkovic, Z. J. and A. Barta. 2002. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30: 623-635. https://doi.org/10.1093/nar/30.3.623
  22. Radonic, A., S. Thulke, I. M. Mackay, O. Landt, W. Siegert and A. Nitsche. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun 313: 856-862. https://doi.org/10.1016/j.bbrc.2003.11.177
  23. Rao, K.V.N., L. Chen, M. Gnanasekar, and K. Ramaswamy. 2002. Cloning and characterization of a calcium-binding, histamine-releasing protein from Schistosoma mansoni. J. Biol. Chem. 277: 31207-31213. https://doi.org/10.1074/jbc.M204114200
  24. Rhodes, D.R., J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey and A. M. Chinnaiyan. 2004. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the Proc. Natl. Acad. Sci. U.S.A 101: 9309-9314. https://doi.org/10.1073/pnas.0401994101
  25. Sanchez, J.C., D. Schaller, F. Ravier. O. Golaz, S. Jaccoud, M. Belet, M. R. Wilkins, R. James, J. Deshusses, and D. Hochstrasser. 1997. Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18: 150-155. https://doi.org/10.1002/elps.1150180127
  26. Schmittgen, T.D. and B. A. Zakrajsek. 2000. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods 46: 69-81. https://doi.org/10.1016/S0165-022X(00)00129-9
  27. Sequencing ProjectInternational Rice Genome. 2005. The map-based sequence of the rice genome. Nature 436: 793-800. https://doi.org/10.1038/nature03895
  28. Suzuki, T., P. Higgins and D. Crawford. 2000. Control selection for RNA quantitation. Biotechniques 29: 332-337.
  29. Thaw, P., N. J. Baxter, A. M. Hounslow, C. Price, J. P. Waltho and C. J. Craven, C.J., 2001. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat. Struct. Mol. Biol. 8:701-704. https://doi.org/10.1038/90415
  30. Thellin, O., W. Zorzi, B. Lakaye, B. De Borman, B. Coumans, G. Hennen, T. Grisar, A. Igout, and E. Heinen. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75: 291-295. https://doi.org/10.1016/S0168-1656(99)00163-7
  31. Thiele, H., M. Berger, A. Skalweit and B. Thiele. 2003. Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). European Journal of Biochemistry 267: 5473-5481. https://doi.org/10.1046/j.1432-1327.2000.01609.x
  32. Yenofsky, R., S. Cereghini, A. Krowczynska and G. Brawerman. 1983. Regulation of mRNA utilization in mouse erytholeukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol. Cell. Biol 3:1197-1203. https://doi.org/10.1128/MCB.3.7.1197
  33. Zhong, H. and J. W. Simons. 1999. Direct comparison of GAPDH, beta-action, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem. Biophys. Res. Commun 259: 523-526. https://doi.org/10.1006/bbrc.1999.0815