Identification of 26 Germplasms of Safflower (Carthamus tinctorius L.) with ISSR and SCAR Markers

  • 투고 : 2010.09.20
  • 발행 : 2010.12.31

초록

Safflower (Carthamus tinctorius L.) is a herb primarily distributed throughout in the world. We have used the inter-simple sequence repeats (ISSR) technique to investigate the phylogenetic relationships and genetic diversity of C. tinctorius. Of all germplasms, 88.7% were polymorphic among all germplasms. Mean genetic diversity within germplasms was very low (0.048). The Turkey germplasm had the highest expected diversity (0.082) and Australia germplasm was the lowest (0.020). These values indicate that most of the genetic diversity of safflower is found among germplasms and there is a high among-germplasm differentiation. We found eight phenetic bands for determining the specific marker of germplasm with SCAR markers. The regions of the Mediterranean Sea and India may be the most probable candidates for the origin of safflower. The tree showed four major clades: (1) European germplasms, (2) Azerbaijan, Egypt, and Ethiopia, (3) Australia, and (4) America.

키워드

참고문헌

  1. Ashri, A. 1974. Natural interspecific hybridization between cultivated safflower and their wild C. tenuis. Euphytica 23: 385-386. https://doi.org/10.1007/BF00035882
  2. Ashri, A. and P.F. Knowles. 1960. Cytogenetics of saftlower (Carthamus L.) species and their hybrids. Agron. J. 52: 11-17. https://doi.org/10.2134/agronj1960.00021962005200010004x
  3. Ashri, A., D. E., Zimmer, A. L. Urie, and P. D. Knowles. 1975. Evaluation of germ plasm collection of safflower Carthamus tinctorius L. VI. Length of planting to flowering period and plant height in Israel, Utah and Washington. Theor. App. Genet. 46: 359-364. https://doi.org/10.1007/BF00281678
  4. Charters, Y. M., A. Robertson, M. J. Wilkinson, and G. Ramsay. 1996. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchorcd simple sequence repeat (SSR) primers. Theor. Appl. Genet. 92: 442-447. https://doi.org/10.1007/BF00223691
  5. De Candolle, A. 1885. Origin of Cultivated Plants. Retrieved on 2007-09-25. pp. 164, D. Appleton & Co, New York.
  6. Doebley, J. 1990. Isozymic evidence and the evolution of crop plants. 165-191. In D. E. Soltis and P. S. Soltis, eds. Isozymes in plant biology. Chapman and Hall, UK.
  7. Gupta, M., Y. S. Chyi, J. Romero-Severson, and J. L. Owen. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89: 998-1006.
  8. Hamada, H. and T. Kakunaga. 1982. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298: 396-398. https://doi.org/10.1038/298396a0
  9. Hamada, H., M. G. Petrino, T. Kakunaga, M. Siedman, and B. D. Stroller. 1984. Characterization of genome poly (dT-dG) poly (dC-dA) sequences: structure, organization and conformation. Mol. Cell Biol. 4: 2610-2621. https://doi.org/10.1128/MCB.4.12.2610
  10. Hancock, J. F. 2004. Plant evolution and the origin of crop species (2nd ed.), pp. 313, CABI Publishing, Oxon.
  11. Harlan, J. R. 1971. Agricultural origins: centers and noncenters. Science 174: 468-473. https://doi.org/10.1126/science.174.4008.468
  12. Hanelt, P. 1963. Monographische Ubersicht der Gattung Carthamus L. (Compositae). Feddes Repertorium Specierum Novarum Regni Vegetabilis. Bot. Taxon. Geobt. 67: 41-180.
  13. Johnston, A. M., D. L., Tanaka, P. R., Miller, S. A., Brandt, D. C., Nielson, G. P. Lafond, and N. R. Riveland. 2002. Oilseed crops for semiarid cropping systems in the Northern Great Plains. Agron. J. 94: 231-240. https://doi.org/10.2134/agronj2002.0231
  14. Jung, G., P. W. Skroch, J. Nienhuis, D. P. Coyne, E. Arnaud-Santana, H. M. Ariyarathne, and Maria. 1999. Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci. 39: 1448-1455. https://doi.org/10.2135/cropsci1999.3951448x
  15. Karp, A., O. Seberg, and M. Buatti. 1996. Molecular techniques in the assessment of botanical diversity. Ann. Bot. (London) 78: 143-149. https://doi.org/10.1006/anbo.1996.0106
  16. Khampila, J., K. Lertart, W. Saksirirat, J. Sanitchn, N. Muangsan, and P. Theerakulpisut. 2008. Identification of RAPD and SCAR markers linked to northern leaf blight resistance in waxy corn (Zea mays var. certain). Euphytica 164: 615-625. https://doi.org/10.1007/s10681-008-9647-z
  17. Knowles, P. F. 1969. Centers of plant diversity and conservation of crop germplasm: Safflower. Econ. Bot. 23: 324-329. https://doi.org/10.1007/BF02860678
  18. Knowles, P. F. 1981. Proceedings of First International Safflower Conference. University of California, Davis, CA, USA. July 12-16. 299 pp.
  19. Kumar, S., J. Dudley, M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299-306. https://doi.org/10.1093/bib/bbn017
  20. Lioi, L. and I. Galasso. 2002. Oligonucleotide DNA fingerprinting revealing polymorphism in Phaseolus lunatus L. Genet. Resour. Crop Evol. 49: 53-58. https://doi.org/10.1023/A:1013809915096
  21. Luty, J. A., Z. Guo, H. F. Willard, D. H. Ledbetter, S. Ledbetter, and M. Litt. 1990. Five polymorphic microsatellite VNTRs on the human X chromosome. Am. J. Hum. Genet. 46: 776-783.
  22. Martinez-Soriano, J. P., W. M. Wong, D. I. Van Ryk, and R. N. Nazar. 1991. A widely distributed "CAT" family of repeative DNA sequences. J. Mol. Biol. 217: 629-635. https://doi.org/10.1016/0022-2836(91)90521-7
  23. Morral, N., V. Nunes, T. Casals, and X. Estivill. 1991. CA/GT microsatellite alleles within the crytic fibroses transmembrane conductance regulator (CFTR) gene are not generated by unequal crossing over. Genomics 10: 692-698. https://doi.org/10.1016/0888-7543(91)90454-M
  24. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70I: 3321-3323.
  25. Parks, J. C. and C. R. Werth. 1993. A study of spatial features of cIones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am. J. Bot. 80: 537-544. https://doi.org/10.2307/2445369
  26. Paran, I. and R. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993.
  27. Poulsen, G. B. G. Kahl, and K. Weising. 1993. Abundance and polymorphism of simple repetitive DNA sequences in Brassica napus L. Theor. Appl. Genet. 85: 994-1000.
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  29. Schmidt, T., K. Boblenz, M. Metzlaff, D. Kaemmer, K. Weising, and G. Kahl. 1993. DNA fingerprinting in sugar beet (Beta vulgaris) - identifìcation of double-haploid breeding lines. Theor. Appl. Genet. 85: 653-657.
  30. Stallings, R. L., A. F. Ford, D. Nelson, D. C. Torney, C. E. Hildebrand, and R. K Myozis. 1991. Evolution and distribution of (GT)n repetitive sequences in the mammalian genome. Genomics 10: 807-815. https://doi.org/10.1016/0888-7543(91)90467-S
  31. Vavilov, N. I. 1950. The origin, variation and immunity and breeding of cultivated plants. Chron. Bot. 13: 1-336.
  32. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.
  33. Zietkiewicz, E., A. Rafalski, and D. Labunda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183. https://doi.org/10.1006/geno.1994.1151
  34. Zohary, D. and M. Hopf. 2000. Domestication of Plants in the Old World. pp. 211, 3rd eds., Oxford University Press, New Headway.