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The join operator is fundamental in relational database systems. Evaluating join queries on
large tables is challenging because records need to be efficiently matched based on a given key.
In this work, we analyze join queries in SQL with large tables in which a foreign key may be
null, invalid or valid, given a referential integrity constraint. We conduct an extensive join
performance evaluation on three DBMSs. Specifically, we study join queries varying table sizes,
row size and key probabilistic distribution, inserting null, invalid or valid foreign key values. We
also benchmark three well-known query optimizations: view materialization, secondary index
and join reordering. Our experiments show certain optimizations perform well across DBMSs,
whereas other optimizations depend on the DBMS architecture.
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1. INTRODUCTION

The join operator is fundamental in query processing in a relational database

management system (RDBMS). In this work we benchmark the join operator on

modern relational database systems, using state of the art join algorithms. In an

OLTP database where referential integrity is enforced, foreign keys have valid values.

Therefore, most join queries work with valid keys. However, for practical reasons, to

allow record insertion when there is missing information or when the logical data

model behind the database evolves, foreign keys may be allowed to have null values;

we will discuss this case in detail later. On the other hand, when multiple databases
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are integrated into a central database, or when transactional databases, from

different organizations, exchange information foreign keys will likely have invalid

values. An end user may be confronted with the problem of computing join queries

with tables having inconsistent keys. This problem may be compounded by

denormalization and replication, when some, but not all, tables are replicated in a

distributed environment. Denormalization propagates referential issues. Replication

is generally used to keep local copies of tables to avoid remote network access, but it

introduces potential inconsistency. This article studies join queries with null, invalid

and valid keys, considering referential integrity. That is, we consider all potential

cases: a key that should be ignored (null), a key that will result in an unsuccessful

search (invalid) and a key that results in a successful search and will produce a match

and an output row (valid). Foreign keys involving nulls and invalid values are typical

in database integration, ETL (Extract, Transform, Load) scripts in a data warehouse

and data mining preparation. On the other hand, foreign keys having only valid

values are representative of OLTP databases where referential integrity is enforced.

Notice join queries on tables with null and invalid keys are considered related, but

algorithmically different, because null keys do not participate in join processing,

whereas invalid keys do result in an unsuccessful search (and failed key match). We

identify factors that impact join performance and we analyze well-known SQL query

optimizations. Studied factors include table size, row size, key column cardinality, and

key probability distribution. On the query optimization side we consider view

materialization, indexing foreign keys and join reordering. Based on our findings, we

give several recommendations.

The article is organized as follows. Section 2 contains definitions. Section 3 explains

synthetic data set generation and three well-known query optimizations. Section 4

contains an extensive experimental evaluation on three RDBMSs. Related work is

discussed in Section 5. The article concludes with Section 6.

2. DEFINITIONS

To provide a formal exposition we use relational algebra notation to explain join

queries. 

2.1 Join on a Foreign Key

We focus on computing natural joins between two tables linked by a key, which is a

common query in practice. More specifically, we study natural join computation

between two tables T1, T2 on a common column K: T1 K T2, such that K is a foreign

key in T1 and a primary key in T2.

We call T1 the referencing table and T2 the referenced table. Column T1.K is

allowed to have invalid “foreign key” values. That is, there exist values in T1.K which

are not in T2.K. Also, K may include nulls. Let table R store the natural join query

results: R = T1 K T2. The size of table Ti is denoted by |Ti|. The primary key of a

table is underlined (e.g., T1(A, K )).

2.2 Table Definitions

We define tables T1 and T2 to compute natural joins. Let A, K, Xi, Yj (i = 1 ... p, j =
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1 ... q) be columns of integer type (we prefer integers for simplicity of implementation

and speed). T1 is defined as T1(A, K, X1, ..., Xp) with K being a foreign key, possibly

with duplicate values, and T2 as T2(K, Y1, ..., Yq), where K is a primary key. Columns

X1, ..., Xp, Y1, ..., Yq act as non-key columns and are used to simulate large records

in experiments.

2.3 Example

Figure 1 shows a small example illustrating the definitions above. There are a few

referential integrity issues in T1. Table T1 contains one row with an invalid key and

two rows with null keys. The join result table R does not contain any row with invalid

keys. Table T2 has rows not referenced by T1, but that is acceptable from a referential

integrity point of view.

3. BENCHMARKING JOIN QUERIES

This section explains our experimental setup in abstract terms. We contrast difierent

kinds of join operations based on a foreign key. We explain how benchmarking tables

are generated. We then explain well-known query optimizations.

3.1 Primary and Foreign Keys

Null and invalid key values create challenges for query optimization. Primary keys

cannot be null or partially null [Elmasri and Navathe 2000; Codd 1979]. On the other

hand, there exist three mutually exclusive cases for a foreign key value. We indicate

the term used in the experimental section in parentheses. (1) a foreign key value

exists (valid). (2) a foreign key value does not exist (invalid), violating referential

integrity. (3) a foreign key value is marked as null (null), which is a compromise

between the first two cases. Case 1 represents the ideal case. If referential integrity

is enforced then all foreign key values are valid. Case 2 may happen on databases

with relaxed referential integrity constraints or in integrated databases (e.g., a data

warehouse). Case 3 is a common practical solution for missing information when a

new record is inserted. Nulls can stand for: inapplicable or not available attribute

values [Codd 1979]. In this work we assume they represent not available data since

that is the most common scenario. That is, they represent missing information. We

should stress that, in general, not applicable values are due to bad database model

designs as explained in [Elmasri and Navathe 2000].

Figure 1. Example of T1, T2 and R.
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To provide a complementary view, we discuss nulls in the context of keys. Nulls

obey common guidelines: (1) Nulls are sometimes allowed in a foreign key to allow

updating tables with incomplete data. (2) Nulls are not allowed in a primary key K

since a primary key is the fundamental mechanism to identify and search for a row.

(3) Outer joins may produce nulls in foreign keys in tables where referential integrity

is not enforced. That is, the optimizer may populate columns with nulls when tables

to be joined have incomplete or inconsistent content.

3.2 Synthetic Data Generation

Data generation was performed entirely inside the RDBMS, in contrast to external

synthetic database generators (e.g., DBGEN from TPC-H), which require generating

external files and then importing them into the RDBMS. Relational queries in SQL

provided a simple, fast and portable way to generate synthetic data and it gave us

fiexibility to modify foreign key probabilistic distributions. However, it is also feasible

to generate synthetic tables with a program in a traditional programming language

like C++ and then import the files into the RDBMS. Our goal is to study how null,

invalid and invalid keys impact join processing. Specifically, we want to understand

which factor(s) have more weight on query evaluation time, including table sizes,

physical row size, key cardinality, key distribution and join algorithms.

Our basic setup consists of having T1 with an initial large number of rows all

having valid foreign keys in K and then adding a Δ increment of rows with foreign key

K values of the same kind (explained below) to T1, keeping T2 fixed. Each Δ row has

either null, invalid or valid values for K, being an invalid value the default. Then we

iteratively compute R = T1 K T2 to understand time trends (time complexity, I/O

cost, scalability, overhead). Under this data generation scheme, R will remain

constant for join queries when Δ contains null or invalid foreign key values since those

additional rows are filtered out by the  operator. Assuming Δ is ∪-compatible with

T1 and it contains only null or invalid values in K with respect to T2 then R = T1 K

T2 = (T1∪Δ) K T2.

Generating row identifiers in a portable manner was challenging because each

RDBMS provided particular functions to generate record identifiers. Also, even

though OLAP window functions could be used to generate row identifiers they are

slow and not supported by the public domain RDBMS. Instead we created row

identifiers by a series of Cartesian products with a small table, simulating loops (i.e.,

to create a 1 M row table we cross-joined a table with 10 rows 6 times). Such approach

made data generation queries fast and portable.

For invalid keys we analyzed four fundamental discrete probabilistic distribution

functions (pdfs) including the constant, the uniform, the zipf and the geometric

distribution. These functions cover a wide spectrum of real-life scenarios, going from

the “default” uniform case to the completely skewed case. The constant pdf has one

invalid value repeated for the entire increment Δ; this pdf represents a completely

skewed distribution. The uniform pdf draws values uniformly sampled from |T2|

distinct invalid values; not all values may be represented if the sample is small. The

probability of one value is given by 1/|T2|. The uniform pdf represents the classical

case in query optimization and is well understood. Therefore, it is our default case.
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The zipf distribution has invalid values having a linear sequence of frequencies: 1; 2;

3 and so on. That is, invalid values have an approximate probability k/|Δ| of

appearing, for k = 1, 2, .... Finally, the geometric distribution consists of invalid values

having a sequence of geometrically growing frequencies: 1, 2, 4, and so on, given by

2k−1 for k = 1, 2,.... The zipf and geometric pdfs represent skewed distributions. We

treat a null and one constant value differently, since nulls in K are automatically

filtered out before join processing.

3.3 Query Optimizations

We evaluate three well-known query optimizations [Garcia-Molina et al. 2001]: (1)

View materialization for join query (T1 K T2); (2) Secondary index on foreign key K

in T1. (3) Join reordering.

In the view materialization optimization we create a table S1 which excludes invalid

keys from T1 and unreferenced keys from T2: S1 = πT1 (T1 K T2): The π projection

operator is used to obtain the same definition for T1 and S1. This strategy has been

successfully applied before in distributed query processing and it has been called

semijoin. We should mention that most join evaluation techniques consider the case

that many key values in T2 will not be referenced, whereas we also consider that

many T1 values do not have valid references. View materialization represents an

optimal strategy to evaluate join queries since it excludes any invalid keys, but it

incurs on significant space usage. More importantly, the view needs to be incrementally

maintained when new rows are inserted into T1.

For the secondary index optimization an additional index on K only for T1 is

created. It is assumed T1 already has an index on its primary key, but K may not be

indexed. For integrated databases and databases exchanging information we expect K

not to have an index in T1. The secondary index uses much less space than a

materialized view and it can be easily maintained, but it incurs on search overhead

at query evaluation time.

The join reordering optimization is applicable when there are two or more joins

involving foreign keys involving three or more tables. When there is a multi-way join,

joins with a higher number of invalid values are evaluated first. This strategy

attempts to reduce intermediate table sizes as early as possible. Join reordering is a

well-known algebraic optimization which attempts to reduce the size of intermediate

tables by evaluating joins that have higher number of invalid keys earlier, like

traditional relational query optimization. This optimization relies on keeping extended

statistics on foreign key columns. Such statistics can be easily maintained when the

same join queries are evaluated over and over. In the experimental section we focus

on joins between one table with several foreign keys and several referenced tables

(i.e., similar to one fact table surrounded by dimension tables in an OLAP database).

4. EXPERIMENTAL EVALUATION

4.1 Setup

We used three modern RDBMSs (one open-source, two commercial), running on the

following hardware configuration. We avoid mentioning the specific commercial name
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of each RDBMS since our article does not intend to compare (i.e., benchmark) them

with each other. Instead, we want to find general trends and evaluate query

optimizations on state-of-the-art database systems. The three RDBMSs were running

on three identical servers with a CPU at 3.2 GHz, 4 GB of main memory and 1 TB

on disk. As explained in Section 3, synthetic table generation and performance

evaluation was performed with automatically generated SQL code. We used relatively

small tables (relative to RAM) in order to repeat queries many times, but we cleared

the RDBMS cache memory before each experiment using RDBMS-specific commands

(i.e., tables were always read from disk). Most experiments use the default index on

the primary key provided by each RDBMS without secondary indexes, which are

studied separately. Times are measured in seconds.

As explained in Section 3, R is appended with Δ increments of keys, where all keys

are of the same kind. We decided not to insert sets of rows having a mix of nulls and

invalid keys because nulls are semantically different from invalid key values and

because they are internally manipulated by each RDBMS in a different manner.

Invalid keys have a uniform distribution by default. But we also study the impact of

other probability distribution functions. When all keys in Δ are null or invalid the join

result R remains the same (i.e., it remains constant across queries). On the other

hand, when foreign keys in Δ are valid then R is different on each query.

4.2 Performance Evaluation Issues

Time measurements had significant variability depending on the specific setup for

query evaluation. There are two well-known facts in query evaluation. First,

evaluating a query in temporary disk space is much faster than evaluating it in

permanent disk space (saving results in a table). Second, consecutive repetitions of

the same query accelerates evaluation due to buffer warming. We experimentally

compared temporary and permanent disk space speedup and query acceleration due

to repetition, but due to lack of space we do not show times in the paper. Evaluating

the join in temporary disk space was significantly faster (two to three times faster

than permanent space). Then we analyzed the effect of buffer warming by repeating

the same query five times. It produced a significant acceleration in RDBMS A (1/3

time), good acceleration in RDBMS C (1/2 time) and no acceleration in RDBMS B (no

table caching). Therefore, in order to make an accurate performance evaluation, we

evaluated joins in temporary disk space and avoided buffer warming by dropping and

re-creating T1 and T2 before benchmarking each join query.

Tables T1 and T2 were indexed as follows. We used the default indexing mechanism

Table I. Join algorithm.

second. idx |T2| RDBMS A RDBMS B RDBMS C

N 1k hash hash hash

N 100k sort-merge hash hash

Y 1k sort-merge hash sort-merge

Y 100k sort-merge hash sort-merge
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of each RDBMS specifying a primary key (PK) constraint in the DDL (table definition).

Based on their PK, both tables T1 and T2 had a primary key index by default. The

foreign key K in T1 did not have a secondary index by default. The last set of

experiments evaluates the impact of a secondary index.

In summary, our default setup was as follows. We measured elapsed time for

execution of each query five times, and we report the average, indicating the elapsed

time in seconds. In general time measurement variability was small for each set of

experiments. Queries were evaluated in temporary space and tables were dropped

and recreated before time measurement to avoid caching. In general, the tables were

generated with parameters |T1| = 1 M, |Δ| = 1 M, |T2| = 100k, p = 10, q = 10.

4.3 RDBMS Query Plans

We analyzed the query plans based on experiments parameters |T1|, |T2|, Δ, pdf

and secondary index on K in T1. We found that the number of rows with null or

invalid keys did not influence the query plan. The two main parameters that

influenced choice of a query plan were table size and secondary index. Hash-joins and

sort-merge joins were the two join algorithms used in all RDBMSs. That is, no

RDBMS used a nested-loop join even when T2 was small. For RDBMS A the size of

table T2 influenced the preferred join algorithm. For RDBMS B the join algorithm

selected by the optimizer was always a hash join. In RDBMS C the secondary index

of T1 determined the join algorithm. In RDBMS A no column statistics are computed

on a table by default; the user needs to explicitly collect statistics. In RDBMS B and

RDBMS C statistics are automatically collected, but the overhead was lower in

RDBMS C. Table I shows join algorithms selected by the optimizer depending on T2

and the secondary index for T1.

4.4 Impact of Invalid Keys

We start by studying the effect of |T2| on time. Table II shows how time varies as

|T2| varies keeping T1 fixed. In this case K in T1 has a uniform pdf. We insert rows

into T2 that are not referenced by T1. For the three RDBMSs the time to join nulls

is less than the time to join invalid key values, which in turn is less than the time

to join valid keys. To understand why, we analyzed the query plans: before joining

tables, null keys are filtered out and valid keys end up producing an output row in

R. In RDBMS A and RDBMS C we can see |T2| plays a minor role in join

performance since times grow very slowly when T2 grows an order of magnitude. In

Table II. Varying T2, |T1|=2M and |Δ|=1M (n=null, i=invalid, v=valid; times in secs).

RDBMS A RDBMS B RDBMS C

|T2| n i v n i v n i v

1K 14 12 27 3 3 4 1.5 1.5 1.5

10K 15 15 27 3 3 4 1.5 1.5 1.5

100K 19 28 37 5 6 8 1.6 1.6 1.7

1,000K 22 29 43 11 13 15 1.6 1.7 1.7
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RDBMS A time barely doubles when T2 grows three orders of magnitude, whereas for

RDBMS C time growth is almost flat. In contrast, in RDBMS B there is a more

significant relative time growth, where time doubles when T2 grows an order of

magnitude. Therefore, |T2| is more important in RDBMS B. In the remaining

experiments we test join queries under challenging conditions, with |T2| = 100k as

default.

We now turn our attention to |T1|, where T1 has a growing number of rows with

null/invalid keys. We study scalability experiments varying |Δ| when T2 is small or

large (e.g., 1k versus 100k). Both valid and invalid keys were uniformly distributed.

Results are summarized in Table III. Ideally, if the RDBMS “knew” T1 rows have

invalid/null keys times should remain almost constant (i.e., the time for |Δ|=0).

When T2 is small we can see in all RDBMSs nulls/invalids take almost the same time.

In RDBMS C the three foreign key times are practically the same, stressing its

efficiency. When T2 is large, times do grow when |T1| increases and there is a gap

between nulls and invalids: invalid key values take more time. In general, time grows

linearly for invalids and sublinearly for nulls. In a similar manner to the previous

experiment, joining valid keys takes more time than joining invalid keys, which is

explained by the extra time needed to write output rows. We conclude that |T1| is

more important than |T2|, especially for invalid keys.

Figure 2 analyzes time growth varying |T1| for an initial |T1|=1M. We compare

with |T2|=100k (large) and |T2|=1000 (small), inserting |Δ| rows with null foreign

key values. In RDBMS A time grows slowly for invalids when |T2|=100k, but

remains almost constant otherwise. In RDBMS B time is almost constant for nulls

and grows faster for invalids. Time grows linearly in RDBMS C when T2 is large, but

grows slowly when T2 is slow. We can see hash-joins scale well in all RDBMSs,

showing nulls have little impact. On the other hand, we can see the sort-merge join

(RDBMS A) is more impacted by nulls/invalids. We conclude that nulls marginally

impact performance (as expected) and invalid keys indeed have an impact on

performance.

Our next experiment analyzes the impact of row (record) size in both T1 and T2,

leaving one or the other fixed, as shown in Table IV. Recall from Section 2 that p is

row size of T1 and q is the row size of T2. Notice T1 does not have an index on K and

therefore every row is scanned. We vary p and q to understand which one plays a

Table III. Varying |Δ|/|T1| and |T2| (n=null, i=invalid, v=valid; times in secs).

RDBMS A RDBMS B RDBMS C

|Δ| |T1| |T2| n i v n i v n i v

0 1,000K 1k 13.4 13.2 14.2 2.4 2.4 2.4 0.5 0.5 0.5

800K 1,800K 1k 14.2 14.8 25.2 2.8 2.8 3.0 1.2 1.5 1.7

1,600K 2,600K 1k 14.5 14.9 30.9 2.9 3.4 4.5 1.3 1.7 1.9

0 1,000K 100k 14.1 14.4 14.6 3.6 4.0 4.6 0.5 0.5 0.5

800K 1,800K 100k 20.7 24.8 41.1 4.7 6.7 8.1 1.4 1.4 1.6

1,600K 2,600K 100k 21.4 31.5 48.2 4.8 7.0 10.4 1.4 1.7 2.1
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more important role in performance. In this case we iteratively duplicate row size to

observe if I/O time doubles (i.e. row size grows geometrically). We can see times

remain almost constant in RDBMS C, but they slowly grow in RDBMS A and

RDBMS B, especially for invalids. However, they do not grow at the same geometric

rate as p or q. The reason is I/O is block based and wider rows have a marginal

impact on time. It is interesting times do grow when q grows, despite the fact that T2

is indexed. We conclude that the impact of row size is RDBMS-specific and that there

Fig. 2. Time growth varying |T1|.

Table IV. Varying p (row size of T1) and q (row size of T2), |Δ| =1M and |T2|=100k (times in secs).

RDBMS A RDBMS B RDBMS C

p q nulls invalid nulls invalid nulls invalid

10 10 16.0 24.8 5.0 6.2 1.1 1.2

20 10 16.8 23.8 5.9 8.8 1.0 1.1

40 10 17.4 24.2 8.3 12.3 1.0 1.0

80 10 19.0 27.6 12.4 20.6 1.1 1.1

10 10 16.0 24.8 5.0 6.2 1.1 1.2

10 20 16.7 25.0 5.3 6.4 1.1 1.2

10 40 16.8 25.2 4.8 6.3 1.2 1.2

10 80 17.4 33.7 5.3 6.5 1.2 1.2
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are opportunities for query optimization. 

The previous experiments leave questions about skewed key distributions unanswered.

Can we expect hash joins and sort-merge joins to be robust to skewed key distributions?

Table V shows time growth inserting invalid keys with the four probabilistic

distributions explained in Section 3. In this case T1 does not have a secondary index

on K. Recall from Table I when T1 does not have a secondary index RDBMS A uses

sort-merge join, whereas RDBMS B and RDBMS C use a hash join. We can observe

skewed distributions do impact join performance for large tables (i.e., large |Δ|), but

do not matter for small Δ. We now analyze the widest gap (difference between

minimum and maximum time) in each RDBMS for |Δ|=1.6M. In RDBMS A the time

for the zipf and constant distributions is twice the time for the uniform distribution.

This is explained by the fact that the hash indexing mechanism incurs on many

collisions for skewed distributions. In RDBMS B the pattern is different: times grow

about 40% between the constant and the rest. This is explained by the fact that B-

trees efficiently handle duplicate values during join. In RDBMS C the join algorithms

are marginally influenced by the probabilistic distribution. However, both RDBMS B

and RDBMS C use hash joins and they have different trends. We conclude that the

probabilistic distribution impacts sort-merge and hash joins.

Table V. Impact of probabilistic distribution of key; |T2|=100k (times in secs).

RDBMS A RDBMS B RDBMS C

|Δ| |T1| const unif zipf geom cons unif zipf geom const unif zipf geom

0 1,000,000 13.3 13.3 13.3 13.3 3.6 3.6 3.6 3.6 0.5 0.6 0.5 0.5

100,000 1,100,000 20.2 20.2 19.5 19.2 4.4 6.8 5.5 5.4 0.8 0.7 0.8 0.7

200,000 1,200,000 24.5 27.5 24.5 28.2 5.1 5.1 6.1 6.1 1.0 1.0 1.0 0.9

400,000 1,400,000 33.1 27.8 35.6 32.1 5.5 5.7 6.3 5.7 0.9 0.9 1.0 0.9

800,000 1,800,000 37.4 28.8 36.5 33.0 4.8 5.5 6.4 5.9 1.2 1.2 1.1 1.2

1,600,000 2,600,000 59.4 31.5 62.3 43.5 5.1 7.0 6.8 6.7 1.1 1.2 1.1 1.1

Table VI. Query Optimization: view materialization Y/N (times in secs).

RDBMS A RDBMS B RDBMS C

|Δ| |T1| |T2| Y N Y N Y N

0 1,000K 1k 13.2 13.2 2.4 2.4 0.5 0.5

100K 1,100K 1k 13.2 14.0 2.4 2.6 0.5 0.6

800K 1,800K 1k 13.2 14.8 2.4 2.8 0.5 1.5

1600K 2,600K 1k 13.2 14.9 2.4 3.4 0.5 1.7

0 1,000K 100k 14.1 14.4 3.6 4.0 0.5 0.5

100K 1,100K 100k 14.1 19.6 3.6 5.7 0.5 0.6

800K 1,800K 100k 14.1 24.8 3.6 6.7 0.5 1.4

1600K 2,600K 100k 14.1 31.5 3.6 7.0 0.5 1.7
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4.5 Query Optimizations

Table VI compares the use of the materialized view, the first optimization. This query

optimization produces a significant speedup in tables with many invalid keys in all

RDBMSs. Time savings are proportional the number of invalid keys, as expected. All

RDBMSs take advantage of the precomputation to avoid searching for invalid keys.

The impact is more significant when T2 is large.

We evaluate our second query optimization: creating a secondary index for joins,

shown in Table VII. Since invalid keys take longer time to process than null keys they

are the default. T1 has initially 1M rows with valid key values in K and T2 has 100k

rows. We add  increments, doubling increment size, to T1 having nulls or uniformly

distributed invalids in K. The index is created before measuring time and it is

dropped right after measuring time. This procedure assured the index was created in

an optimal manner avoiding insertion overhead. Time measurements exclude the

time to create the index. Table VII shows the secondary index is very important for

efficient processing of nulls and invalid keys in RDBMS A and RDBMS C. The

speedup is significant when |Δ|=1.6M. In contrast, the existence of a secondary index

does not benefit RDBMS B which relies on hash joins. Experiments (not shown) with

a smaller |T2|=1k produce similar results. In RDBMS A and RDBMS C the secondary

index was always exploited by the join algorithm. In fact, RDBMS C changed its join

algorithm. It was interesting that in RDBMS B the query optimizer always favored

a table scan over using the index. That is, the secondary index was not exploited. In

the experiments shown here we forced RDBMS B to use the secondary index,

producing a marginal speedup improvement in a few cases. That is, it helped little or

it was worse as predicted by the query optimizer.

For the third optimization we study query evaluation time reordering joins on a 2-

way join with tables S, T1, T2. We assume table S has two foreign keys K1 and K2 that

refer to tables T1 and T2, respectively. The number of S rows with invalid keys for K1

Table VII. Query Optimization: secondary index on foreign key (times in secs).

RDBMS A RDBMS B RDBMS C

Δ |T1| Y N Y N Y N

0 1,000,000 13.8 14.4 3.9 4.0 0.5 0.6

100K 1,100,000 13.7 19.6 5.5 5.8 0.5 0.7

800K 1,800,000 14.4 24.8 6.4 5.5 0.5 1.3

1,600K 2,600,000 15.3 31.5 7.3 7.0 0.5 1.2

Table VIII. Query Optimization: join reordering for 2-way join with 3 tables (times in secs).

RDBMS A RDBMS B RDBMS C

|K1| |K2| Y N Y N Y N

1000k 0 42 72 17 39 2.2 6.8

1000k 100k 40 68 16 37 2.1 6.2

1000k 1000k 35 35 15 15 1.9 1.9
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is |K1| and for K2 it is |K2|. Notice one table has two foreign keys, instead of having

a FK “chain” from S to T1 and then from T1 to T2. In such case, joins that produce

smaller tables should get evaluated first. Table sizes are as follows: |S|=2M, |T1|=

1M, |T2|=100k. For this experiment we assume K1 and K2 have independent errors,

uniformly distributed. We vary the number of invalid keys in K2 to study the impact

on time. Table VIII compares the use of the reordering optimization turning it on and

off. As we can see join reordering produces a time decrease in all RDBMS. The

speedup is more significant when one key (K1) has many invalid values and the other

key (K2) has no invalid values.

4.6 Summary and Recommendations

Each RDBMS optimizer produced different query evaluation plans for a natural join

between two tables. The number of rows with invalid keys did not influence the query

plan. We found hash-joins were more efficient to process nulls/invalids than sort-

merge join, but more extensive experiments are needed to understand trade-offs.

Table IX shows the rank of importance of each parameter we analyzed in the

experiments. We base this ranking on the impact on time (as percentage of running

time) by the given parameter. A large |Δ| implies a larger T1 with a large fraction

of rows with null and invalid key values. In general, the secondary index and the

fraction of rows with invalid keys tend to be the dominating factors, in that order; the

exception for the secondary index is RDBMS B, which favors hash joins.

In general, we recommend creating a secondary index for a foreign key column with

invalid or null values that will be used frequently (second optimization). Creating

materialized views (temporary tables) that exclude invalid keys in the referencing

table can produce a significant speedup when there is a large fraction of rows with

invalid keys (first optimization). If invalid keys are unlikely to be useful it is

recommended to substitute them for nulls because this can produce an important

speedup in join processing, especially for large referenced tables. Nullifying invalid

keys with skewed distributions can help improving join performance or in the worst

case leave it unaffected. Skewed distributions of invalid keys impact performance. On

the other hand, row size and table size of referenced tables play a small role in

performance.

Table IX. Rank of importance of each parameter.

Parameter RDBMS A RDBMS B RDBMS C

Secondary index 1 6 1

|Δ| 2 2 2

|T2| 3 1 3

K pdf 4 4 4

p 5 3 4

q 6 5 4
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5. RELATED WORK

The join operator is the most demanding operator in relational algebra. Therefore,

there is a lot of work on efficient join processing in general [Garcia-Molina et al. 2001]

and in OLAP processing. In [Mishra and Eich 1992] the authors present an extensive

survey of different kinds of joins and various implementation techniques. References

[Swami 1989; Tay 1990; Gelder 1993] and others study the optimization of the join

operator on several tables. A particular work that studied join evaluation with nulls

is [Yuan and Chiang 1998]; this work proposes an extended relational algebra to

handle nulls, but does not consider the physical database aspects as we do. Removing

or adding information in an incomplete database having nulls is studied in [Keller

and Winslett 1984]; the focus of this paper is to repair the database based on some

constraints, rather than dealing with joins with nulls. Re-optimization and iterative

improvement is extensively studied for complex queries in [Ioannidis and Kang 1990;

Kabra and DeWitt 1998].  Reference [Chaudhuri 1998] presents an overview of query

optimization that includes interesting discussion on the join operator.

Our optimizations for join queries on incomplete databases are related to research

on measuring and improving

data quality in relational databases considering referential integrity [García-García

and Ordonez 2008; Ordonez and García-García 2008]. Other related work on incomplete

databases and database integration includes the following. In [Hurson et al. 1987] the

authors examine the relationship between incomplete information and the join

operation. They present a join module for a database machine and a time analysis to

evaluate its performance. In contrast, our study evaluates the join operator, from a

query optimization point of view in databases with data quality issues. We should

mention that most join evaluation techniques consider the case that many key values

in T2 will not be referenced, whereas we also consider that many T1 values do not

have valid references. In [Lim and Chiang 2000] the authors investigate the correct

integration of relationship instances obtained from different source databases,

focusing in detecting semantic conflicts and reconciling them. In summary, we have

gone further by studying joins in the presence of referential integrity issues.

6. CONCLUSIONS

We analyzed the performance of natural join queries in three RDBMSs in the

presence of null, invalid and valid keys. We studied three common relational query

optimizations: view materialization excluding invalid keys, creation of a secondary

index on a foreign key and join reordering based on number of invalid key values. We

conducted an experimental evaluation on three RDBMSs. In all RDBMSs, the two

alternative join algorithms were hash-joins and sort-merge joins, which were not

influenced by the fraction of rows with invalid keys. Our findings were the following.

There still exist efficiency issues when processing joins, highlighting opportunities for

query optimization. The number of rows with invalid keys is more important when

the referenced table is large. The time to process valid keys is greater than or equal

to processing keys invalid values, highlighting the I/O cost to produce output rows.

Skewed probability distributions for invalid keys indeed impact join performance on
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large tables when there is a significant fraction of rows with nulls or invalid keys.

Row size of the referencing table is far more important than the row size of the

referenced table. However, row size is a minor I/O factor, compared to other factors.

Some query optimizations significantly improved join performance in tables with a

large number of invalid keys. View materialization produced a significant speedup

improvement in every case since it avoided searching invalid values completely. The

secondary index produced a significant speedup, except in one RDBMS, which favored

hash joins in every plan. Join reordering proved best when one foreign key had many

invalid values and the other foreign key had a very low number of invalid values.

Finally, view materialization proved to be a widely applicable optimization because it

worked well in all RDBMSs.

Even though optimizing join queries is an old topic, there are interesting research

issues. We intend to study multi-way joins with several foreign keys in more depth,

especially for chained foreign key relationships. We would like to better understand

if hash joins are more efficient than sort-merge joins for tables with many invalid

values or having skewed key distributions. Efficiently handling invalid keys when

there are queries combining joins and aggregations is another important problem. We

want to study other natural join queries, where two tables share the same primary

key (e.g., diffierent summarizations from same normalized table), or two tables share

the same foreign key (i.e., the foreign key does not act as a primary key in either

table). Join queries with composite keys, where subsets of attributes may be invalid,

is a more general aspect that also needs to be analyzed.
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