DOI QR코드

DOI QR Code

Synthesis and Ligand Based 3D-QSAR of 2,3-Bis-benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules

  • Soung, Min-Gyu (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Jong-Han (Unigen Inc.) ;
  • Kwon, Byoung-Mog (Korea Research Institute of Bioscience and Biotechnology) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • Received : 2010.01.11
  • Accepted : 2010.03.17
  • Published : 2010.05.20

Abstract

In order to search new inhibitors against farnesyl protein transferase (FPTase), a series of 2,3-bis-benzylidenesuccinaldehyde derivatives (1-29) were synthesized and their inhibition activities ($pI_{50}$) against FPTase were measured. From based on the reported results that the inhibitory activities of dimers 2,3-bis-benzylidenesuccinaldehydes were higher than those of monomers cinnamaldehydes, 3D-QSARs on FPTase inhibitory activities of the dimers (1-29) were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The statistical qualities of the optimized CoMFA model II ($r^2{_{cv.}}$= 0.693 and $r^2{_{ncv.}}$= 0.974) was higher than those of the CoMSIA model II ($r^2{_{cv.}}$ = 0.484 and $r^2{_{ncv.}}$ = 0.928). The dependence of CoMFA models on chance correlations was evaluated with progressive scrambling analyses. And the inhibitory activity exhibited a strong correlation with steric factors of the substrate molecules. Therefore, from the results of graphical analyses on the contour maps and of predicted higher inhibitory active compounds, it is suggested that the structural distinctions and descriptors that contribute to inhibitory activities ($pI_{50}$) against FPTase will be able to applied new inhibitor design.

Keywords

References

  1. Hill, B. T.; Perrin, D.; Kruczynski, A. Crit. Rev. Oncol. Hematol. 1997, 33, 7. https://doi.org/10.1016/S1040-8428(99)00053-0
  2. Kelloff, G. J.; Lubet, R. A.; Fay, J. R.; Steele, V. E.; Boone, C. W.; Crowell, J. A.; Sigman, C. C. Cancer Epidemiol., Biomarkers & Prev. 1997, 6, 267.
  3. Qian, Y.; Sebti, S. M.; Hamilton, A. D. Biopolymers 1997, 43, 5.
  4. Vilella, D.; Sanchez, M.; Platas, G.; Salazar, O.; Genilloud, O.; Royo, I.; Cascales, C.; Martin, I.; Diez, T.; Silverman, K. C.; Lingham, R. B.; Singh, S. B.; Jayasuriya, H.; Pelaez, F. J. Ind. Microbiol. Biot. 2000, 25, 315. https://doi.org/10.1038/sj.jim.7000085
  5. Fernandez, M.; Tundidor-Camba, A.; Caballero, J. M. Mol. Simulat. 2005, 31, 575. https://doi.org/10.1080/08927020500134144
  6. Gibbs, J. B.; Pompliano, D. L.; Mosser, S. D.; Rands, E.; Lingham, R. B.; Singh, S. B.; Scolnick, E. M.; Kohl, N. E.; Oliff, A. J. Biol. Chem. 1993, 268, 7617.
  7. Ohkanda, J.; Strickland, C. L.; Blaskovich, M. A.; Carrico, D.; Lockman, J. W.; Vogt, A.; Bucher, C. J.; Sun, J.; Qian, Y.; Knowles, D.; Pusateri, E. E.; Sebti, S. M.; Hamilton, A. D. Org. Biomol. Chem. 2006, 4, 482. https://doi.org/10.1039/b508184j
  8. Wesierska-Gadek, J.; Maurer, M.; Schmid, G. J. Cellular Biochem. 2007, 102, 736. https://doi.org/10.1002/jcb.21325
  9. Godio, R. P.; Fouces, R.; Gudina, E. J.; Martin, J. F. Curr. Genet. 2004, 46, 287. https://doi.org/10.1007/s00294-004-0533-5
  10. Singh, S. B.; Jayasuriya, H.; Silverman, K. C.; Bonfiglio, C. A.; Williamson, J. M.; Lingham, R. B. Bioorg. Med. Chem. 2000, 8, 571. https://doi.org/10.1016/S0968-0896(99)00312-0
  11. Lee, S. H.; Kim, M. J.; Bok, S. H.; Lee, H. S.; Kwon, B. M.; Shin, J. H.; Seo, Y. W. J. Org. Chem. 1998, 63, 7111. https://doi.org/10.1021/jo980919p
  12. Martin, L. A.; Head, J. E.; Pancholi, S.; Salter, J.; Quinn, E.; Detre, S.; Kaye, S.; Howes, A.; Dowsett, M.; Johnston, S. R. Mol. Cancer Ther. 2007, 6, 2458. https://doi.org/10.1158/1535-7163.MCT-06-0452
  13. Equbal, T.; Silakari, O.; Ravikumar, M. Eur. J. Med. Chem. 2008, 43, 204. https://doi.org/10.1016/j.ejmech.2007.02.013
  14. Bailey, H. H.; Alberti, D. B.; Thomas, J. P.; Mulkerin, D. L.; Binger, K. A.; Gottardis, M. M.; Martell, R. E.; Wilding, G. Clin. Cancer Res. 2007, 13, 3623. https://doi.org/10.1158/1078-0432.CCR-07-0158
  15. Sung, N. D.; Cho, Y. K.; Kwon, B. M.; Hyun, K. H.; Kim, C. K. Arch Pharm. Res. 2004, 27, 1001. https://doi.org/10.1007/BF02975421
  16. Sung, N. D.; Cheun, Y. G.; Kwon, B. M.; Park, H. Y.; Kim, C. K. Bull. Korean Chem. Soc. 2003, 24, 1509. https://doi.org/10.5012/bkcs.2003.24.10.1509
  17. Sung, N. D.; Kwon, B. M. J. Kor. Soc. Agric. Chem. Biotechnol. 2002, 45, 223.
  18. Shin, D. S.; Kim, J. H.; Lee, S. K.; Han, D. C.; Son, K. H.; Kim, H. M.; Cheon, H. G.; Kim, K. R.; Sung, N. D.; Lee, S. J.; Kang, S. K.; Kwon, B. M. Bioorg. Med. Chem. 2006, 14, 2498. https://doi.org/10.1016/j.bmc.2005.11.028
  19. Akamatsu, M. Curr. Topics Med. Chem. 2002, 2, 1381. https://doi.org/10.2174/1568026023392887
  20. Ward, R. S.; Pelter, A.; Edwards, M. I.; Gilmore, J. Tetrahedron 1996, 52, 12799. https://doi.org/10.1016/0040-4020(96)00761-2
  21. Reiss, Y.; Goldstein, J. L.; SEabra, M. C.; Casey, P. J.; Brown, M. S. Cell 1990, 62, 81. https://doi.org/10.1016/0092-8674(90)90242-7
  22. Tripos, S. Molecular Modeling and QSAR Software on CD-Rom (Ver. 8.0) 2001; Tripos Associates, Inc.: 1699 S. Hanley Road, Suite 303 St. Louis, MO. 63144-2913, U.S.A.
  23. Clark, M.; Van Opdenbosch, N. J. Comput. Chem. 1989, 10, 982. https://doi.org/10.1002/jcc.540100804
  24. Gilbert, K. M.; Venanzi, C. A. J. Comput. Aided Mol. Des. 2006, 20, 209. https://doi.org/10.1007/s10822-006-9046-2
  25. Kerr, R. Biophys. J. 1994, 67, 1501. https://doi.org/10.1016/S0006-3495(94)80624-1
  26. Klebe, G. In 3D-QSAR Drug Design, Theory, Methods and Applications: Structural Alignment of Molecules; Kubinyi, H., Ed.; ESCOM: Leiden, 1993; pp 173-199.
  27. Cramer, R. D., III.; Bunce, J. D.; Patterson, D. E.; Frank, I. E. Quant. Struct. Act. Relat. 1988, 7, 18. https://doi.org/10.1002/qsar.19880070105
  28. Clark, R. D.; Fox, P. C. J. Comput. Aided Mol. Des. 2004, 18, 563. https://doi.org/10.1007/s10822-004-4077-z
  29. Kwon, B. M.; Cho, Y. K.; Lee, S. H.; Nam, J. Y.; Bok, S. H.; Chun, S. K.; Kim, J. A. Planta. Med. 1996, 62, 183 https://doi.org/10.1055/s-2006-957851
  30. Kim, J. H. M. Sc. Thesis, Chungnam National University at Daejeon, Korea, February 2004.
  31. Juan, A. A. S.; Cho, S. J. J. Mol. Model. 2007, 13, 601. https://doi.org/10.1007/s00894-007-0172-0

Cited by

  1. 3D-QSARs analyses for Tyrosinase Inhibitory Activity of 2-Phenyl-1,4-benzopyrone (Flavones) Analogues and Molecular Docking vol.53, pp.4, 2010, https://doi.org/10.3839/jabc.2010.040
  2. ChemInform Abstract: Synthesis and Ligand Based 3D‐QSAR of 2,3‐Bis‐benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules. vol.41, pp.40, 2010, https://doi.org/10.1002/chin.201040219
  3. α-Hydroxyphosphonates as versatile starting materials vol.194, pp.4, 2010, https://doi.org/10.1080/10426507.2018.1544132