DOI QR코드

DOI QR Code

Theoretical Studies on the Alkylidene Silylenoid H2C = SiLiF and Its Insertion Reaction with R-H (R = F, OH, NH2)

  • Tan, Xiaojun (College of Medical and Life Science, University of Jinan) ;
  • Wang, Weihua (College of Chemistry Science, Qufu Normal University) ;
  • Li, Ping (College of Chemistry Science, Qufu Normal University) ;
  • Li, Qingyan (College of Medical and Life Science, University of Jinan) ;
  • Cheng, Lei (College of Medical and Life Science, University of Jinan) ;
  • Wang, Shufen (College of Medical and Life Science, University of Jinan) ;
  • Cai, Weiwang (College of Medical and Life Science, University of Jinan) ;
  • Xing, Jinping (College of Medical and Life Science, University of Jinan)
  • Received : 2009.09.10
  • Accepted : 2010.01.26
  • Published : 2010.05.20

Abstract

The geometries and isomerization of the alkylidene silylenoid $H_2C$ = SiLiF as well as its insertion reactions with R-H (R = F, OH, $NH_2$) have been systematically investigated at the B3LYP/6-311+$G^*$ level of theory. The potential barriers of the three insertion reactions are 97.5, 103.3, and 126.1 kJ/mol, respectively. Here, all the mechanisms of the three reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted silylene ($H_2C$ = SiHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the three reactions are -36.4, -24.3, and 3.7 kJ/mol, respectively. Compared with the insertion reaction of $H_2C$ = Si: and R-H (R = F, OH and $NH_2$), the introduction of LiF makes the insertion reaction occur more easily. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the three insertion reactions should be as follows: H-F > H-OH > H-$NH_2$.

Keywords

References

  1. Gaspar, P. P.; West, R. The Chemistry of Organic Silicon Compounds: Part 3, 2nd ed.; Wiley: New York, 1999; p 2463.
  2. Denk, D.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Hannland, A.; Wangner, M.; Metzler, N. J. Am. Chem. Soc. 1994, 116, 2691. https://doi.org/10.1021/ja00085a088
  3. Gerhus, B.; Lappert, M. F.; Heincke, J.; Boese, R.; Blaser, D. J. Chem. Soc., Chem. Commun. 1996, 11931.
  4. Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 1999, 121, 9722. https://doi.org/10.1021/ja9925305
  5. Gilman, H.; Peterson, D. J. J. Am. Chem. Soc. 1965, 87, 2389. https://doi.org/10.1021/ja01089a016
  6. Nefedow, O. M.; Manakow, M. N. Angew. Chem. 1964, 76, 270.
  7. Boudjouk, P.; Samaraweera, U.; Sooriyakumaran, R.; Chrusciel, J.; Anderson, K. R. Angew. Chem. Int. Ed. Engl. 1988, 27, 1355. https://doi.org/10.1002/anie.198813551
  8. Tsumuragua, T.; Batcheller, S. A.; Masamune, S. Angew. Chem. Int. Ed. Engl. 1991, 30, 902. https://doi.org/10.1002/anie.199109021
  9. Tsumuragua, T.; Batcheller, S. A.; Masamune, S. Angew. Chem. 1991, 103, 916. https://doi.org/10.1002/ange.19911030805
  10. Tamao, K.; Kawachi, A.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 3989. https://doi.org/10.1021/ja00036a064
  11. Corriu, R.; Lanneau, G.; Priou, C.; Soulairol, F.; Auner, N.; Probst, R.; Conlin, R.; Tan, C. J. J. Organomet. Chem. 1994, 466, 55. https://doi.org/10.1016/0022-328X(94)88029-8
  12. Kawachi, A.; Tamao, K. Organometallics 1996, 15, 4653. https://doi.org/10.1021/om960421i
  13. Kawachi, A.; Doi, N.; Tamao, K. J. Am. Chem. Soc. 1997, 119, 233. https://doi.org/10.1021/ja9630957
  14. Tamao, K.; Kawachi, A. Angew. Chem. Int. Ed. Engl. 1995, 34, 818. https://doi.org/10.1002/anie.199508181
  15. Tanaka, Y.; Kawachi, A.; Hada, M.; Nakatsuji, H.; Tamao, K. Organometallics 1998, 17, 4573. https://doi.org/10.1021/om980567c
  16. Lee, M. E.; Cho, H. M.; Lim, Y. M.; Choi, J. K.; Park, C. H.; Jeong, S. E.; Lee, U. Chem. Eur. J. 2004, 10, 377. https://doi.org/10.1002/chem.200305151
  17. Clark, T.; Schleyer, P. R. J. Organomet. Chem. 1980, 191, 347. https://doi.org/10.1016/S0022-328X(00)81063-3
  18. Feng, S. Y.; Feng, D. C.; Li, J. H. Chem. Phys. Lett. 2000, 316, 146. https://doi.org/10.1016/S0009-2614(99)01269-5
  19. Feng, S. Y.; Zhou, Y. F.; Feng, D. C. J. Phys. Chem. A 2003, 107, 4116. https://doi.org/10.1021/jp026451i
  20. Xie, J.; Feng, D. C.; Feng, S. Y. J. Organomet. Chem. 2006, 691, 208. https://doi.org/10.1016/j.jorganchem.2005.08.031
  21. Xie, J.; Feng, D. C.; Feng, S. Y.; Zhang, J. Chemical Physics 2006, 323, 185. https://doi.org/10.1016/j.chemphys.2005.08.053
  22. Feng, D. C.; Xie, J.; Feng, S. Y. Chem. Phys. Lett. 2004, 396, 245. https://doi.org/10.1016/j.cplett.2004.08.054
  23. Li, W. Z.; Gong, B. A.; Cheng, J. B. Acta Phys. Chim. Sin. 2006, 22, 653. https://doi.org/10.1016/S1872-1508(06)60024-7
  24. Li, W. Z.; Gong, B. A.; Cheng, J. B. Acta Chim. Sin. 2007, 65, 1573.
  25. Wang, W. H.; Li, P.; Tan, X. J. Struct. Chem. 2008, 19, 527. https://doi.org/10.1007/s11224-008-9313-z
  26. He, S. G.; Tackett, B. S.; Clouthier, D. J. J. Chem. Phys. 2004, 121, 257. https://doi.org/10.1063/1.1758699
  27. Lee, C. W.; Yang, T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  28. Tan, X. J.; Wang, W. H.; Li, P.; Yang, X. L.; Zheng, G. X. Theor. Chem. Acc. 2007, 118, 357. https://doi.org/10.1007/s00214-007-0268-8
  29. Frisch, M. J. et al., Gaussian 98, Gaussian Inc., Pittsburgh, PA, 1998.

Cited by

  1. Insight into the substitution reactions of silylenoid H2SiLiF with GeH3X (X = F, Cl, Br): a theoretical study vol.21, pp.4, 2015, https://doi.org/10.1007/s00894-015-2640-2