DOI QR코드

DOI QR Code

2]2+ to Native DNA"> Comparison of the Binding Modes of [Ru(2,2'-bipyridine)3]2+ and [Ru(2,2':6',2"-terpyridine)2]2+ to Native DNA

  • Jang, Yoon-Jung (Department of Chemistry, College Science, Yeungnam University) ;
  • Lee, Hyun-Mee (Department of Chemistry, College Science, Yeungnam University) ;
  • Jang, Kyeung-Joo (Department of Chemistry, College Science, Yeungnam University) ;
  • Lee, Jae-Cheol (Department of Chemistry, College Science, Yeungnam University) ;
  • Kim, Seog-K. (Department of Chemistry, College Science, Yeungnam University) ;
  • Cho, Tae-Sub (Department of Chemistry, College Science, Yeungnam University)
  • Received : 2010.01.19
  • Accepted : 2010.03.16
  • Published : 2010.05.20

Abstract

The $[Ru(tpy)_2]Cl_2$ (tpy:2,2':6',2"-terpyridine) complex was synthesized and its structure was confirmed by $^1H$-NMR and elemental analysis. Its binding mode toward DNA was compared with the well-known $[Ru(bpy)_3]Cl_2$ (bpy:2,2-bipyridyl), using isotropic absorption, linear dichroism(LD) spectroscopy, and an energy minimization study. Compared to $[Ru(bpy)_3]^{2+}$, the $[Ru(tpy)_2]^{2+}$ complex exhibited very little change in its absorption pattern, especially in the MLCT band, upon binding to DNA. Furthermore, upon DNA binding, both Ru(II) complexes induced a decrease in the LD magnitude in the DNA absorption region. The $[Ru(tpy)_2]^{2+}$ complex produced a strong positive LD signal in the ligand absorption region, which is in contrast with the $[Ru(bpy)_3]^{2+}$ complex. Observed spectral properties led to the conclusion that the interaction between the ligands and DNA bases is negligible for the $[Ru(tpy)_2]^{2+}$ complex, although it formed an adduct with DNA. This conclusion implies that both complexes bind to the surface of DNA, most likely to negatively charged phosphate groups via a simple electrostatic interaction, thereby orienting to exhibit the LD signal. The energy minimization calculation also supported this conclusion.

Keywords

References

  1. Norden, B.; Lincoln, P; Akerman, B.; Truite, E. Metal Ions in Biophysical Systems; Sigel, H., Eds.; Marcel Dekker, Inc.: New York, 1996; p 177.
  2. Dupureur, C. M.; Barton, J. K. Inorg. Chem. 1997, 36, 33. https://doi.org/10.1021/ic960738a
  3. Greguric, I.; Aldrich-Wright, J. R.; Collins, J. G. J. Am. Chem. Soc. 1997, 119, 3621. https://doi.org/10.1021/ja962395l
  4. Nair, R. B.; Teng, E. S.; Kirkland, S. L.; Murphy, C. J. Inorg. Chem. 1998, 37, 139. https://doi.org/10.1021/ic970432j
  5. Liu, J. G.; Ye, B. H.; Li, H.; Ji, L. N.; Li, R. H.; Zhou, J. Y. J. Inorg. Biochem. 1999, 73, 117. https://doi.org/10.1016/S0162-0134(99)00011-2
  6. Onfelt, B.; Gostring, L.; Lincoln, P.; Nordén, B.; Onfelt, A. Mutagenesis 2002, 17, 317. https://doi.org/10.1093/mutage/17.4.317
  7. Xu, H.; Zheng, K. C.; Chen, Y.; Li, Y. Z.; Lin, L. J.; Li, H.; Zhang, P. X.; Ji, L. N. Dalton Trans. 2003, 2260.
  8. Xu, H.; Zheng, K. C.; Deng, H.; Lin, L. J.; Zhang, Q. L.; Ji, L. N. New J. Chem. 2003, 2, 1255.
  9. Xu, H.; Zheng, K. C.; Lin, L. J.; Li, H.; Gao, Y.; Ji, L. N. J. Inorg. Biochem. 2004, 98, 87. https://doi.org/10.1016/j.jinorgbio.2003.09.002
  10. Olofsson, J.; Onfelt, B.; Lincoln, P.; Nordén, B.; Matousek, P.; Parker, A.W.; Tuite, E. J . Inorg. Biochem. 2002, 91, 286. https://doi.org/10.1016/S0162-0134(02)00466-X
  11. Coates, C. G.; Olofsson, J.; Coletti, M.; McGarvey, J. J.; Onfelt, B.; Lincoln, P.; Nordén, B.; Tuite, E.; Matousek, P.; Parker, A.W. J. Phys. Chem. B 2001, 105, 12653. https://doi.org/10.1021/jp0127115
  12. Onfelt, B.; Lincoln, P.; Nordén, B.; Baskin, J. S.; Zewail, A. H. Proc. Natl. Acad .Sci USA 2000, 97, 5708. https://doi.org/10.1073/pnas.100127397
  13. Gisselfalt, K.; Lincoln, P.; Norden, B.; Jonsson, M. J. Phys. Chem. B 2000, 104, 3651. https://doi.org/10.1021/jp993369n
  14. Lincoln, P.; Nordén, B. J. Phys. Chem. B 1998, 102, 9583. https://doi.org/10.1021/jp9824914
  15. Yang, G.; Wu, J. Z.; Wang, L.; Ji, L. N.; Tian, X. J. Inorg. Biochem. 1997, 66, 141. https://doi.org/10.1016/S0162-0134(96)00194-8
  16. Xiong, Y.; He, X. F.; Zou, X. H.; Wu, J. Z.; Chen, X. M.; Ji, L. N.; Li, R. H.; Zhou, J. Y.; Yu, K. B. Dalton Trans. 1999, 19.
  17. Scott, A. M.; Pyati, R. J. Phys. Chem. B 2001, 105, 9011. https://doi.org/10.1021/jp0112323
  18. Chao, H.; Li, R. H.; Jiang, C. W.; Li, H.; Ji, L. N.; Li, X. Y. J. Chem. Soc.,Dalton Trans. 2001, 1920.
  19. Ayers, T.; Caylor, N.; Ayers, G.; Godwin, C.; Hathcock, D. J.; Stuman, V.; Slattery, S. Inorg. Chim. Acta 2002, 328, 33. https://doi.org/10.1016/S0020-1693(01)00667-3
  20. Sens, C.; Rodriguez, M.; Romero, I.; Liobet, A. Inorg. Chem. 2003, 42, 8385. https://doi.org/10.1021/ic0346836
  21. Vaidyanathan, V. G.; Nair, B. U. Dalton Trans. 2005, 2842.
  22. Kumar, C. V.; Asuncion, E. H. J. Am. Chem. Soc. 1993, 115, 8547. https://doi.org/10.1021/ja00072a004
  23. Harriman, A.; Khatyr, A.; Ziessel, R. Dalton Trans. 2003, 2061.
  24. Leon, C. P.; Kador, L.; Peng, B.; Thelakkat, M. J. Phys. Chem. B 2005, 109, 5783. https://doi.org/10.1021/jp044946x
  25. Donoghue, K. A.; Kelly, J. M.; Kruger, P. E. Dalton Trans. 2004, 13.
  26. Wilhelmsson, L. M.; Westerlund, F.; Lincoln, P.; Nordén, B. J. Am. Chem. Soc. 2002, 124, 12092. https://doi.org/10.1021/ja027252f
  27. Nair, R. B.; Teng, E. S.; Kirkland, S. L.; Murphy, C. J. Inorg. Chem. 1998, 37, 139. https://doi.org/10.1021/ic970432j
  28. Grover, N.; Ciftan, S. A.; Thorp, H. H. Inorg. Chim. Acta 1995, 240, 335. https://doi.org/10.1016/0020-1693(95)04550-3
  29. Gallori, E.; Vettori, C.; Alessio, E.; Vilchez, F. G.; Vilaplana, R. V.; Orioli, P.; Casini, A.; Messori, L. Arch. Biochem. Biophys. 2000, 376, 156. https://doi.org/10.1006/abbi.1999.1654
  30. Deng, H.; Cai, J.; Xu, H.; Zhang, H.; Ji, L. N. J. Chem. Soc., Dalton Trans. 2003, 325.
  31. Yun, B. H.; Kim, J. O.; Lee, B. W.; Lincoln, P.; Norden, B.; Kim, J. -M.; Kim, S. K. J. Phys. Chem. B 2003, 107, 9858. https://doi.org/10.1021/jp027828n
  32. Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1992, 31, 9319. https://doi.org/10.1021/bi00154a001
  33. Liu, J. G.; Zhang, Q. L.; Shi, X. F.; Ji, L. N. Inorg. Chem. 2001, 40, 5045. https://doi.org/10.1021/ic001124f
  34. Vos, J. G. Polyhedron 1992, 11, 2285. https://doi.org/10.1016/S0277-5387(00)83515-9
  35. Caspar, J. V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583. https://doi.org/10.1021/ja00355a009
  36. Hirot, C.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1993, 115, 3448. https://doi.org/10.1021/ja00062a007
  37. Constable, E. C.; Cargill Thompson, D. W.; Tocher, D. A.; Daniels, M. A. M. New J. Chem. 1992, 16, 855.
  38. Norden, B.; Kubista, M.; Kurucsev, T. Q. Rev. Biophys. Chem. 1992, 25, 51. https://doi.org/10.1017/S0033583500004728
  39. Norden, B.; Kurucsev,T. J. Mol. Recognit. 1994, 7, 141. https://doi.org/10.1002/jmr.300070211
  40. Rodger, A.; Norden, B. Oxford University Press: New York 1997.
  41. Moon, J.-H.; Kim, S. K.; Sehlstedt, U.; Rodger, A.; Norden, B. Biopolymers 1996, 38, 593. https://doi.org/10.1002/(SICI)1097-0282(199605)38:5<593::AID-BIP5>3.0.CO;2-N

Cited by

  1. Synthesis, characterization, and DNA-binding studies of ruthenium complexes [Ru(tpy)(ptn)]2+ and Ru(dmtpy)(ptn)]2+ vol.113, pp.None, 2012, https://doi.org/10.1016/j.jinorgbio.2012.03.008
  2. Bis-tridentate N-Heterocyclic Carbene Ru(II) Complexes are Promising New Agents for Photodynamic Therapy vol.59, pp.13, 2010, https://doi.org/10.1021/acs.inorgchem.0c00686