DOI QR코드

DOI QR Code

Synthesis and Luminescence Properties of Lanthanide Complexes of a Novel Polyaminopolycarboxylate Ligand

  • Tang, Chang-Quan (School of Chemistry and Chemical Engineering, Central South University) ;
  • Tang, Rui-Ren (School of Chemistry and Chemical Engineering, Central South University) ;
  • Tang, Chun-Hua (School of Chemistry and Chemical Engineering, Central South University) ;
  • Zeng, Zhi-Wen (School of Chemistry and Chemical Engineering, Central South University)
  • Received : 2010.01.08
  • Accepted : 2010.03.14
  • Published : 2010.05.20

Abstract

A novel polyaminopolycarboxylate ligand with many coordination sites, N,N,$N^1,N^1,N^2,N^2$-[( 2,4,6-tri(aminomethyl)-pyridine]hexakis(acetic acid) (TPHA), was designed and synthesized and its lanthanide complexes $Na_6Tb_2$(TPHA)$Cl_6{\cdot}14H_2O$, $Na_6Eu_2$(TPHA)$Cl_6{\cdot}8H_2O$, $Na_6Gd_2$(TPHA)$Cl_6{\cdot}11H_2O$ and $Na_6Sm_2$(TPHA)$Cl_6{\cdot}9H_2O$ were successfully prepared. The ligand and the complexes were characterized by elemental analysis, IR, mass, NMR and TG-DTA. The TG-DTA studies indicated that the complexes had a high thermal stability, whose initial decomposition temperature was over $270^{\circ}C$. The luminescence properties of the complexes in solid state were investigated and the results suggested that $Tb^{3+}$ and $Eu^{3+}$ ions could be sensitized efficiently by the ligand, especially the Tb(III) complex displayed a very strong luminescence intensity (> 10000) and only displayed characteristic metal-centered luminescence. Also, the correlative comparison between the structure of ligand and luminescence properties showed how the number of the coordination atoms of ligand can be a prominent factor in the effectiveness of ligand-to-metal energy transfer.

Keywords

References

  1. Brunet, E.; Juanes, O.; Sedano, R.; Rodríguez-Ubis, J. C. Tetrahedron 2005, 61, 6757. https://doi.org/10.1016/j.tet.2005.05.009
  2. Buenzli, J. C. Acc. Chem. Res. 2006, 39, 53. https://doi.org/10.1021/ar0400894
  3. Nasso, I.; Galaup, C.; Havas, F.; Tisnes, P.; Picard, C.; Laurent, S.; Vander Elst, L.; Muller, R. Inorg. Chem. 2005, 44, 8293. https://doi.org/10.1021/ic0507722
  4. Dossing, A. Eur. J. Inorg. Chem. 2005, 1425.
  5. Yuan, J.; Wang, G. Trends Anal. Chem. 2006, 25, 490. https://doi.org/10.1016/j.trac.2005.11.013
  6. Parker, D. Coord. Chem. Rev. 2000, 205, 109. https://doi.org/10.1016/S0010-8545(00)00241-1
  7. Arnesano, F.; Banci, L.; Bertini, I.; Capozzi, F.; Ciofi-Baffoni, S.; Ciurli, S.; Luchinat, C.; Mangani, S.; Rosato, A.; Turano, P.; Viezzoli, M. S. Coord. Chem. Rev. 2006, 250, 1419. https://doi.org/10.1016/j.ccr.2006.01.008
  8. Kostova, I. Curr. Med. Chem.: Anti-Cancer Agents 2005, 5, 591. https://doi.org/10.2174/156801105774574694
  9. Aime, S.; Geninatti Crich, S.; Gianolio, E.; Giovenzana, G. B.; Tei, L.; Terreno, E. Coord. Chem. Rev. 2006, 250, 1562. https://doi.org/10.1016/j.ccr.2006.03.015
  10. Caravan, P. Chem. Soc. Rev. 2006, 35, 512. https://doi.org/10.1039/b510982p
  11. Pandya, S.; Yu, J.; Parker, D. Dalton Trans. 2006, 2757.
  12. Picard, C.; Geum, N.; Nasso, I.; Mestre, B.; Tisnes, P.; Laurent, S.; Muller, R. N.; Vander Elst, L. Bioorg. Med. Chem. Lett. 2006, 16, 5309. https://doi.org/10.1016/j.bmcl.2006.07.091
  13. Brunet, E.; Juanes, O.; Rodriguez-Ubis, J. C. Curr. Chem. Biol. 2007, 1, 11. https://doi.org/10.2174/187231307779814039
  14. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293. https://doi.org/10.1021/cr980440x
  15. Sammes, P. G.; Yahioglu, G. Nat. Prod. Rep. 1996, 13, 1. https://doi.org/10.1039/np9961300001
  16. Beer, P. D.; Brindley, G. D.; Fox, O. D.; Grieve, A.; Ogden, M. I.; Szemes, F.; Drew, M. G. B. J. Chem. Soc., Dalton Trans. 2002, 3101.
  17. Picard, C.; Geum, N.; Nasso, I.; Mestre, B.; Tisnès, P.; Laurent, S.; Muller, R. N.; Elst, L. V. Bioorg. Med. Chem. Lett. 2006, 16, 5309. https://doi.org/10.1016/j.bmcl.2006.07.091
  18. Tang, R. R.; Yan, Z. E.; Guo, C. C. Chem. J. Chinese U. 2006, 27, 472.
  19. Curtis, N. F.; Curtis, Y. M. Inorg. Chem. 1964, 4, 804. https://doi.org/10.1021/ic50028a007
  20. Luo, Y. M.; L, J. L.; X, L. X.; T, R. R.; T, X. C. Spectrochim. Acta Part A 2009, 72, 703. https://doi.org/10.1016/j.saa.2008.10.059
  21. Shi, X. M.; Tang, R. R.; Gu, G. L.; Huang, K. L. Spectrochim. Acta Part A 2009, 72, 198. https://doi.org/10.1016/j.saa.2008.09.019
  22. Mukkala, V. M.; Sund, C.; Kwiatkowski, M. Helv. Chim. Acta 1992, 75.
  23. Zhang, H. J.; Gou, R. H.; Yan, L.; Yang, R. D. Spectrochim. Acta Part A 2007, 66, 289. https://doi.org/10.1016/j.saa.2006.02.054

Cited by

  1. -IRMOF-3 vol.2014, pp.31, 2014, https://doi.org/10.1002/ejic.201402789
  2. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline vol.25, pp.4, 2015, https://doi.org/10.1007/s10895-015-1573-6
  3. Synthesis, luminescence properties of a novel aromatic carboxylic acid (L) and corresponding Eu(III) and Tb(III) compounds as well as the binding characteristics of L with bovine serum albumin ( vol.696, pp.10, 2011, https://doi.org/10.1016/j.jorganchem.2010.10.059