DOI QR코드

DOI QR Code

The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis

  • Jung, Heon (Department of Chemical & Biological Engineering, Korea University) ;
  • Yang, Dae-Ryook (Department of Chemical & Biological Engineering, Korea University) ;
  • Joo, Oh-Shim (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Jung, Kwang-Deog (Clean Energy Research Center, Korea Institute of Science and Technology)
  • Received : 2010.02.07
  • Accepted : 2010.03.08
  • Published : 2010.05.20

Abstract

Ternary Cu/ZnO/$Al_2O_3$ catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/$Al_2O_3$ was maximized to be 30.6 $m^2$/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/$Al_2O_3$. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 $m^2/g_{cat}$ was to be 2.67 ${\pm}$ 0.27 mmol/$m^2$.h in methanol synthesis at the condition of $250^{\circ}C$, 50 atm and 12,000 mL/$g_{cat}$. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/$Al_2O_3$. The pH of the precipitate solution during the aging time can be maintained at 7 by $CO_2$ bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.

Keywords

References

  1. Olah, G. A.; Geoppert, A.; Prakashi, G. K. S. Beyond Oil and Gas: The Methanol Economy; Wiley-Vch: USA, 2006
  2. Stocker, M. Microporous Materials 1999, 29, 3. https://doi.org/10.1016/S1387-1811(98)00319-9
  3. Song, W.; Marcus, D. M.; Fu, H.; Ehresmann, J. O.; Haw, J. F. J. Am. Chem. Soc. 2002, 124, 3844. https://doi.org/10.1021/ja016499u
  4. Kagan, Y. B.; Liberov, L. G.; Slivinsky, E. V.; Lockev, S. M.; Lin, G. I.; Rozovsky, A. Y.; Bashkirov, A. N. Dokl. Alcad. Nauk, SSSR. 1975, 222, 1093.
  5. Rozovskii, A. Ya.; Lin, G.; Liberov, L. B.; Slivinskii, E. V.; Loktev, S. M.; Kagan, U. B.; Bashkirov, A. N. Kinetics and Catalysis 1997, 18, 691.
  6. Chinchen, G. C.; Denny, P. J.; Parker, D. G.; Spencer, M. S.; Whan, D. A. Appl. Catal. 1987, 30, 333. https://doi.org/10.1016/S0166-9834(00)84123-8
  7. Leonov, V. E.; Karavaev, M. M.; Tsybina, E. N.; Pertrischeva, G. S. Kinet. Katal. 1973, 14, 848.
  8. Villa, P.; Forzatti, P.; Buzzi-Ferraris, G.; Garone, G.; Pasquon, I. Ind. Eng. Chem. Proc. Des. Dev. 1985, 24, 12. https://doi.org/10.1021/i200028a003
  9. Skrzypek, J.; Lachowska, M.; Grzesik, M.; Sloczynski, J.; Nowak, P. Chem. Eng. J. 1995, 58, 101.
  10. Bussche, K. M. V.: Froment, G. F. J. Catal. 1961, 161, 1. https://doi.org/10.1006/jcat.1996.0156
  11. Klier, K.; Chatikavanij, V.; Herman, R. G.; Simmons, G. W. J. Catal. 1982, 74, 343. https://doi.org/10.1016/0021-9517(82)90040-9
  12. Graaf, G. H.; Scholtens, H. Stamhuis, E. J.; Beenackers, A.A.C.M. Chem. Eng. Sci. 1990, 45(4), 773. https://doi.org/10.1016/0009-2509(90)85001-T
  13. Klier, K. Adv. Catal. 1982, 31, 243. https://doi.org/10.1016/S0360-0564(08)60455-1
  14. Szanyi, J.; Goodman, D.W. Catal. Lett. 1991, 10, 383. https://doi.org/10.1007/BF00769173
  15. Chinchen, G. C.; Waugh, K. C.; Whan, D. A. Appl. Catal. 1986, 25, 101. https://doi.org/10.1016/S0166-9834(00)81226-9
  16. Burch, R.; Chappell, R. J.; Golunski, S. E. Catal. Lett. 1988, 1, 439. https://doi.org/10.1007/BF00766204
  17. Spencer, M. S.; Burch, R.; Golunski, S. E. J. Chem. Soc. Faraday Trans. 1991, 87, 1791. https://doi.org/10.1039/ft9918701791
  18. Joo, O. S.; Jung, K. D.; Han, S.; Uhm, S.; Lee, D.; Ihm, S. Appl. Catal. 1996, 35, 273.
  19. Fisher, I. A.; Bell, A. T. J. Catal. 1998, 172, 153.
  20. Jung, K. D.; Bell, A. T. J. Catal. 2000, 193, 207. https://doi.org/10.1006/jcat.2000.2881
  21. Joo, O. S.; Jung, K. D.; Han, S.; Uhm, S. Int. Symposium on $CO_2$ Chemistry 1993, 93.
  22. Venugopal, A.; Palgunadi, J.; Jung, K. D.; Joo, O. S.; Shin, C. J. Mol. Catal. 2009, 302, 20. https://doi.org/10.1016/j.molcata.2008.11.038
  23. Hoppener, R. H.; Doesburg, E. B. M.; Scholten, J. J. F. Appl. Catal. 1985, 25,109.
  24. Fujita, S.; Kanamori, Y.; Satriyo, A. M.; Takezawa, N. Catal. Today 1998, 45, 241. https://doi.org/10.1016/S0920-5861(98)00222-3
  25. Spenser, M. S. Catal. Lett. 2000, 66(4), 255. https://doi.org/10.1023/A:1019076329319
  26. Pollard, A. M.; Spenser, M. S.; Thomass, R. G.; Williams, P. A. Appl. Catal. A 1992, 85, 1. https://doi.org/10.1016/0926-860X(92)80125-V
  27. Xu. J.; Xue, D. J. Phys. Chem. B 2005, 109, 17157. https://doi.org/10.1021/jp052864i
  28. Stoilova, D.; Koleva, V.; Vassileva, V. Spectrochimca Acta A 2002, 58, 2051. https://doi.org/10.1016/S1386-1425(01)00677-1
  29. Frost, R. L.; Martens, W. N.; Rintoul, L.; Mahmutagic, E.; Kloprogge, J. T. J. Raman Spectrosc. 2002, 33, 252. https://doi.org/10.1002/jrs.848

Cited by

  1. -phenylalanine methyl ester vol.4, pp.4, 2014, https://doi.org/10.1039/C3CY00937H
  2. in Methanol Synthesis vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10587
  3. Relative Roles of Methanol Synthesis and Solid Acid Catalysts in the Direct DME Synthesis from Syngas vol.36, pp.4, 2015, https://doi.org/10.1002/bkcs.10235
  4. Hydrogenation Processes vol.117, pp.14, 2017, https://doi.org/10.1021/acs.chemrev.6b00816
  5. Influence of aging time on the microstructural characteristics of a Cu/ZnO-based catalyst prepared by homogeneous precipitation for use in methanol steam reforming vol.121, pp.2, 2017, https://doi.org/10.1007/s11144-017-1161-7
  6. The Evaluation of Synthesis Route Impact on Structure, Morphology and LT-WGS Activity of Cu/ZnO/Al2O3 catalysts vol.147, pp.6, 2017, https://doi.org/10.1007/s10562-017-2048-y
  7. to Methanol vol.40, pp.10, 2017, https://doi.org/10.1002/ceat.201600400
  8. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation vol.8, pp.3, 2017, https://doi.org/10.1039/C6SC04130B
  9. Effect of Gallium Loading on Reducibility and Dispersion of Copper-Based Catalyst vol.659, pp.1662-9795, 2015, https://doi.org/10.4028/www.scientific.net/KEM.659.211
  10. In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates – consequences for the preparation of Cu/ZnO catalysts vol.41, pp.43, 2010, https://doi.org/10.1039/c2dt31236k
  11. Effect of precipitation on physico-chemical and catalytic properties of Cu-Zn-Al catalyst for water-gas shift reaction vol.36, pp.8, 2010, https://doi.org/10.1007/s11814-019-0309-8
  12. Enhanced catalytic performance of spinel-type Cu-Mn oxides for benzene oxidation under microwave irradiation vol.424, pp.no.pc, 2010, https://doi.org/10.1016/j.jhazmat.2021.127523