DOI QR코드

DOI QR Code

A Simple and Quick Chemical Synthesis of Nanostructured Bi2Te3, Sb2Te3, and BixSb2-xTe3

  • Kim, Hee-Jin (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Ki-Jung (Northfield Mount Hermon School 12th) ;
  • Kim, Sung-Jin (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Han, Mi-Kyung (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.01.04
  • Accepted : 2010.02.22
  • Published : 2010.05.20

Abstract

We report a simple and quick route for the preparation of high-quality, nearly monodisperse $Bi_2Te_3$, $Sb_2Te_3$, and $Bi_xSb_{2-x}-Te_3$ nanocrystallites. The reactions of bismuth acetate or antimony acetate with Te in oleic acid result in pure phase of $Bi_2Te_3$ or $Sb_2Te_3$ nanoparticles, respectively. Also, ternary $Bi_xSb_{2-x}Te_3$ nanoparticles were successfully synthesized using the same method. The size and morphology of the nanoparticles were controlled by varying the stabilizing agents. The as-prepared nanoparticles are characterized by X-ray diffraction, scanning electron microscope, and high-resolution transmission electron microscope using an energy dispersive spectroscopy.

Keywords

References

  1. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Science 2008, 320, 634. https://doi.org/10.1126/science.1156446
  2. Ma, Y.; Hao, Q.; Poudel, B.; Lan, Y.; Yu, B.; Wang, D.; Chen, G.; Ren, Z. Nano Lett. 2008, 8, 2580. https://doi.org/10.1021/nl8009928
  3. Dirmyer, M. R.; Martin, J.; Nolas, G. S.; Sen, A.; Badding, J. V. Small 2009, 5, 933. https://doi.org/10.1002/smll.200801206
  4. Zhao, Y.; Burda, C. ACS Appl. Mater. Interfaces 2009, 1, 1259. https://doi.org/10.1021/am900148d
  5. Rowe, D. M. CRC Handbook of Thermoelectrics; CRC Press: LLC, 1995.
  6. Venkatasubramanian, R.; Slivola, E.; Colpitts, T.; O'Quinn, B. Nature 2001, 413, 597. https://doi.org/10.1038/35098012
  7. Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Science 2002, 297, 2229. https://doi.org/10.1126/science.1072886
  8. Cheele, M.; Oeschler, N.; Meier, K.; Kornowski, A.; Klinke, C.; Weller, H. Adv. Funct. Mater. 2009, 19, 3476. https://doi.org/10.1002/adfm.200901261
  9. Lim, J. R.; Whitacre, J. F.; Fleurial, J.-P.; Huang, C.-K.; Ryan, M. A.; Myung, N. V. Adv. Mater. 2005, 17, 1488. https://doi.org/10.1002/adma.200401189
  10. Li, S.; Soliman, H. M. A.; Zhou, J.; Toprak, M. S.; Muhammed, M.; Platzek, D.; Ziolkowski, P.; Mueller, E. Chem. Mater. 2008, 20, 4403. https://doi.org/10.1021/cm800696h
  11. Li, G.-R.; Zheng, F.-L.; Tong, Y.-X. Cryst. Growth Des. 2008, 8, 1226. https://doi.org/10.1021/cg700790h
  12. Xu, Y.; Ren, Z.; Ren, W.; Deng, K.; Zhong, Y. Mater. Lett. 2008, 62, 763. https://doi.org/10.1016/j.matlet.2007.06.064
  13. Xu, Y.; Ren, Z.; Ren, W.; Cao, G.; Deng, K.; Zhong, Y. Mater. Lett. 2008, 62, 4273. https://doi.org/10.1016/j.matlet.2008.06.055
  14. Sun, T.; Zhao, X. B.; Zhu, T. J.; Tu, J. P. Mater. Lett. 2006, 60, 2534. https://doi.org/10.1016/j.matlet.2006.01.033
  15. Christian, P.; O'Brien, P. J. Mater. Chem. 2005, 15, 3021. https://doi.org/10.1039/b503073k
  16. Purkayastha, A.; Kim, S.; Gandhi, D. D.; Ganesan, P. G.; Borca- Tasciuc, T.; Ramanath, G. Adv. Mater. 2006, 18, 2958. https://doi.org/10.1002/adma.200600495
  17. Zhou, B.; Zhao, Y.; Pu, L.; Zhu, J.-J. Mater. Chem. Phys. 2006, 96, 192. https://doi.org/10.1016/j.matchemphys.2005.07.010
  18. Yao, Q.; Zhu, Y.; Chen, L.; Sun, Z.; Chen, X. J. Alloys Compd. 2009, 481, 91. https://doi.org/10.1016/j.jallcom.2009.03.001
  19. McClune, W. Powder Diffraction File, JCPDS International Center for Diffraction Data, Swarthmore, PA.

Cited by

  1. Synthesis of Nanostructured Antimony Telluride for Thermoelectric Applications vol.1742, pp.1946-4274, 2015, https://doi.org/10.1557/opl.2015.141
  2. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials vol.116, pp.18, 2016, https://doi.org/10.1021/acs.chemrev.6b00116
  3. Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications vol.30, pp.48, 2018, https://doi.org/10.1002/adma.201801904
  4. ChemInform Abstract: A Simple and Quick Chemical Synthesis of Nanostructured Bi2Te3, Sb2Te3, and BixSb2-xTe3. vol.41, pp.34, 2010, https://doi.org/10.1002/chin.201034219
  5. Form ohne Struktur: Ein verblüffender Bildungsmechanismus des solvothermal hergestellten Phasenwechselmaterials Sb2Te3 vol.127, pp.22, 2015, https://doi.org/10.1002/ange.201500304
  6. Shape without Structure: An Intriguing Formation Mechanism in the Solvothermal Synthesis of the Phase‐Change Material Sb2Te3 vol.54, pp.22, 2010, https://doi.org/10.1002/anie.201500304