References
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; Chen, X.; Liu, J.; Dresselhaus, M. S.; Chen, G.; Ren, Z. Science 2008, 320, 634. https://doi.org/10.1126/science.1156446
- Ma, Y.; Hao, Q.; Poudel, B.; Lan, Y.; Yu, B.; Wang, D.; Chen, G.; Ren, Z. Nano Lett. 2008, 8, 2580. https://doi.org/10.1021/nl8009928
- Dirmyer, M. R.; Martin, J.; Nolas, G. S.; Sen, A.; Badding, J. V. Small 2009, 5, 933. https://doi.org/10.1002/smll.200801206
- Zhao, Y.; Burda, C. ACS Appl. Mater. Interfaces 2009, 1, 1259. https://doi.org/10.1021/am900148d
- Rowe, D. M. CRC Handbook of Thermoelectrics; CRC Press: LLC, 1995.
- Venkatasubramanian, R.; Slivola, E.; Colpitts, T.; O'Quinn, B. Nature 2001, 413, 597. https://doi.org/10.1038/35098012
- Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Science 2002, 297, 2229. https://doi.org/10.1126/science.1072886
- Cheele, M.; Oeschler, N.; Meier, K.; Kornowski, A.; Klinke, C.; Weller, H. Adv. Funct. Mater. 2009, 19, 3476. https://doi.org/10.1002/adfm.200901261
- Lim, J. R.; Whitacre, J. F.; Fleurial, J.-P.; Huang, C.-K.; Ryan, M. A.; Myung, N. V. Adv. Mater. 2005, 17, 1488. https://doi.org/10.1002/adma.200401189
- Li, S.; Soliman, H. M. A.; Zhou, J.; Toprak, M. S.; Muhammed, M.; Platzek, D.; Ziolkowski, P.; Mueller, E. Chem. Mater. 2008, 20, 4403. https://doi.org/10.1021/cm800696h
- Li, G.-R.; Zheng, F.-L.; Tong, Y.-X. Cryst. Growth Des. 2008, 8, 1226. https://doi.org/10.1021/cg700790h
- Xu, Y.; Ren, Z.; Ren, W.; Deng, K.; Zhong, Y. Mater. Lett. 2008, 62, 763. https://doi.org/10.1016/j.matlet.2007.06.064
- Xu, Y.; Ren, Z.; Ren, W.; Cao, G.; Deng, K.; Zhong, Y. Mater. Lett. 2008, 62, 4273. https://doi.org/10.1016/j.matlet.2008.06.055
- Sun, T.; Zhao, X. B.; Zhu, T. J.; Tu, J. P. Mater. Lett. 2006, 60, 2534. https://doi.org/10.1016/j.matlet.2006.01.033
- Christian, P.; O'Brien, P. J. Mater. Chem. 2005, 15, 3021. https://doi.org/10.1039/b503073k
- Purkayastha, A.; Kim, S.; Gandhi, D. D.; Ganesan, P. G.; Borca- Tasciuc, T.; Ramanath, G. Adv. Mater. 2006, 18, 2958. https://doi.org/10.1002/adma.200600495
- Zhou, B.; Zhao, Y.; Pu, L.; Zhu, J.-J. Mater. Chem. Phys. 2006, 96, 192. https://doi.org/10.1016/j.matchemphys.2005.07.010
- Yao, Q.; Zhu, Y.; Chen, L.; Sun, Z.; Chen, X. J. Alloys Compd. 2009, 481, 91. https://doi.org/10.1016/j.jallcom.2009.03.001
- McClune, W. Powder Diffraction File, JCPDS International Center for Diffraction Data, Swarthmore, PA.
Cited by
- Synthesis of Nanostructured Antimony Telluride for Thermoelectric Applications vol.1742, pp.1946-4274, 2015, https://doi.org/10.1557/opl.2015.141
- Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials vol.116, pp.18, 2016, https://doi.org/10.1021/acs.chemrev.6b00116
- Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications vol.30, pp.48, 2018, https://doi.org/10.1002/adma.201801904
- ChemInform Abstract: A Simple and Quick Chemical Synthesis of Nanostructured Bi2Te3, Sb2Te3, and BixSb2-xTe3. vol.41, pp.34, 2010, https://doi.org/10.1002/chin.201034219
- Form ohne Struktur: Ein verblüffender Bildungsmechanismus des solvothermal hergestellten Phasenwechselmaterials Sb2Te3 vol.127, pp.22, 2015, https://doi.org/10.1002/ange.201500304
- Shape without Structure: An Intriguing Formation Mechanism in the Solvothermal Synthesis of the Phase‐Change Material Sb2Te3 vol.54, pp.22, 2010, https://doi.org/10.1002/anie.201500304