Synthesis of 2-Phenylated 1,1-difluoro-1,3-enynes *via* Alkynylation of β,β-Difluoro-α-phenylvinylstannane

Seung Yeon Han, Ji Hoon Choi, Ji Hye Hwang, and In Howa Jeong*

Department of Chemistry and Medical Chemistry, Yonsei University, Wonju 220-710, Korea. *E-mail : jeongih@yonsei.ac.kr Received March 11, 2010, Accepted March 15, 2010

Key Words: Cross-coupling reaction, β , β -Difluoro- α -phenylvinylstannane, Alkynyl iodides, 2-Phenyl-1,1-difluoro-1,3-enynes

1,3-Envnes represent a class of important synthetic intermediates and have been utilized as essential components in the synthesis of multifunctional molecules¹⁻⁵ and natural products.⁶⁻⁸ Of particular interests in 1,3-envnes are fluorine-containing conjugated envnes which would be important building blocks for the synthesis of fluorinated compounds having unique biological and physical properties.⁹⁻¹² Although various methods for the preparation of nonfluorinated 1,3-envnes have been well documented in the previous literature,¹³ there are only limited reports on the synthesis of fluorinated 1,3-envnes and most of them covered the synthesis of 1,2-difluorinated¹⁴⁻¹⁵ or mono-fluorinated 1,3-enynes.¹⁶⁻²² Moreover, only three examples on the synthesis of 1,1-difluoro-1,3-envne derivatives having high reactivity toward nucleophiles were reported. Burton et al. prepared 1,1-difluoro-2-phenyl-1,3-envnes in low yield as a mixture via the hydrolysis of the trifluoromethylated allenic phosphonium salt.²³ Direct coupling reactions of 1,1-difluorovinyl iodides with alkynylzinc chloride in the presence of Pd catalysis afforded the 1,1-difluoro-1,3-envnes in moderate yields.²⁴ Ichikawa et al. synthesized 2-alkylated 1,1-difluoro-1,3-envnes in good yields via the coupling reaction of 1-alkyl-2,2-difluorovinylboranes, formed from the reaction of 2,2,2-trifluoroethyl *p*-toluenesulfonate with *n*-butyllithium and trialkylboranes, with 1-halo-1-alkynes in the presence of cuprous iodides.²⁵ However, the previous methods have some drawbacks such as low yield preparation, the use of unisolable vinylmetal reagents and lack of generality. Herein, we wish to report first preparation of 2-phenylated 1,1-difluoro-1,3-envnes via the direct coupling reaction of the thermostable and isolable β , β -difluoro- α -phenylvinylstannane with alkynyl iodides in the presence of Pd catalysis.

In the course our studies on the coupling reaction of 1,²⁶ we examined the reactivity of carbon-carbon bond formation between 1 and alkynyl iodides to afford 1,1-difluoro-2-phenyl-1,3-enynes. The results of the coupling reaction between 1 and 1-iodo-1-octyne or phenylethynyl iodide were summarized in Table 1. When 1 was treated with 1-iodo-1-octyne in refluxing THF for 1.5 hours in the presence of Pd(PPh₃)₄ (10 mol %) and CuI (10 mol %), unreacted starting material 1 was recovered and only homocoupled diynes **3** of 1-iodo-1-octyne was obtained in 76% yield based on the conversion of starting material. The use of toluene as a solvent under the same reaction condition resulted in the similar result. When the same reaction was performed in DMF at 80 °C for 1.5 hours, however, the desired enyne **2b** was obtained in 80% yield without diyne **3** (Table 1, entry 3). The longer reaction time or different reaction

temperature decreased the yield of **2b**. The use of only CuI (10 mol %) as a catalyst in this reaction resulted in the formation of only 2,2-difluoro-1-phenylethenyl iodide **4** as a major product, whereas the use of only Pd(PPh₃)₄ (10 mol %) as a catalyst caused the homocoupling reaction of 1-iodo-1-octyne to give diyne **3**. The reaction of **1** with phenylethynyl iodide under the optimized reaction condition provided the corresponding enyne **2f** in only 44% yield (Table 1, entry 9). When the same reaction was performed at 50 °C, the desired product **2f** was obtained in increased yield (65%). However, the reaction at room temperature afforded the homocoupled product **3** in 66% yield along with **4**.

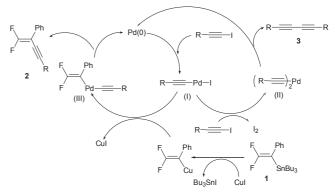
The reactions with different alkynes such as 1-iodo-1-pentyne, 1-iodo-1-nonyne, 1-iodo-1-decyne, and 1-iodo-3-*t*-butyldimethylsiloxyl-1-propyne in DMF at 80 °C for 0.5 - 1.5 hours in the presence of Pd(PPh₃)₄ (10 mol %) and CuI (10 mol %) gave the corresponding 1,3-enynes **2a**, **2c-2e** in 45 - 80% yields. When 1-iodo-2-phenylethyne was used as an coupling partner under the same reaction condition except for reaction temperature such as 50 °C, the corresponding 1,3-enyne **2f** was obtained in 65% yield. The reaction with 1-iodo-2-phenylethyne having substituent such as fluoro, methyl, methoxy, trifluoromethyl and chloro at meta or para position of the benzene ring provid-

 Table 1. Coupling reaction of 1 with 1-iodo-1-octyne or phenylethynyl iodide at the different reaction conditions

$ \begin{array}{c} F \\ F \\ F \\ SnBu_{3} \end{array} + I \\ \hline R \\ \hline Catalyst \\ Solvent, T (^{o}C), t (h) \\ \hline F \\ F \\ \hline C_{1} \\ F \\ \hline C_{2} \\ \hline C_{1} \\ F \\ \hline C_{1} \\ \hline C_{2} \\ \hline C_{1} \\ \hline C_{2} \hline \hline C_{2} \\ \hline C_{2} \hline \hline C_{2} \\ \hline C_{2} \hline \hline C_$							≡–R
1				2 Č R		3	
Entry	R	Catalyst ^a	Solvent	<i>T</i> (°C)	<i>t</i> (h)	$\operatorname{Yield}^{b}(\%)$	
						2	3
1	C_6H_{13}	Pd(PPh ₃) ₄ /CuI	THF	reflux	1.5	0	76
2	C_6H_{13}	Pd(PPh ₃) ₄ /CuI	Toluene	reflux	1.5	0	68
3	C_6H_{13}	Pd(PPh ₃) ₄ /CuI	DMF	80	1.5	80	0
4	C_6H_{13}	Pd(PPh ₃) ₄ /CuI	DMF	80	4	55	0
5	C_6H_{13}	Pd(PPh ₃) ₄ /CuI	DMF	25	4	0	78
6	C_6H_{13}	Pd(PPh ₃) ₄ /CuI	DMF	100	1.5	48	0
7	C_6H_{13}	Pd(PPh ₃) ₄	DMF	80	1.5	0	81
8	C_6H_{13}	CuI ^c	DMF	80	1.5	0	0
9	C_6H_5	Pd(PPh ₃) ₄ /CuI	DMF	80	2	44	0
10	C_6H_5	Pd(PPh ₃) ₄ /CuI	DMF	50	2	65	0
11	$\mathrm{C}_{6}\mathrm{H}_{5}$	Pd(PPh ₃) ₄ /CuI	DMF	25	4	0	66

^{*a*}10 mol % of catalyst was used. ^{*b*}Isolated yield. ^{*c*}2,2-Difluoro-1-phenylethenyl iodide was obtained as a major product.

Table 2. Preparation of 1,1-difluoro-2-phenyl-1,3-enynes 2 via the coupling reactions of 1 with 1-iodo-1-alkynes


F Ph	I	FPh		
F SnBu ₃	1 <u> </u>	h)	F C	
1				`C 2 R
Compound	R	$T(^{\circ}C)$	<i>t</i> (h)	Yield ^a (%)
2a	$n-C_5H_{11}$	80	1.5	80
2b	$n-C_{6}H_{13}$	80	1.5	80
2c	$n-C_7H_{15}$	80	1.5	75
2d	$n-C_8H_{17}$	80	1.5	78
2e	CH ₂ OTBDMS	80	0.5	45
2f	C_6H_5	50	2.0	65
2g	p-FC ₆ H ₄	50	1.5	67
2h	p-CIC ₆ H ₄	50	1.5	64
2i	p-CH ₃ C ₆ H ₄	50	1.0	53
2j	p-CH ₃ OC ₆ H ₄	50	1.5	55
2k	m-FC ₆ H ₄	50	1.0	40
21	3,5-(CF ₃) ₂ C ₆ H ₃	50	1.0	67
2m	TMS	50	1.0	48
2n	$3-SC_4H_3$	50	0.5	59

^aIsolated yield.

ed the corresponding 1,3-envnes 2g-2l in 40 - 67% yields. The reaction of 1 with 1-iodo-2-trimethysilylethyne and 1-iodo-2-(3-thiophenyl)ethyne under the same reaction condition afforded the corresponding 1,3-envnes **2m** and **2n** in 48% and 59% yields, respectively. The results of these reactions are summarized in Table 2.

Although the reaction mechanism of coupling reaction of 1 with 1-iodoalkyne is not clear, we assume that oxidative addition intermediate (I) reacts with β_{β} -difluoro- α -phenylvinylcopper, generated from the reaction of 1 with CuI, to give an intermediate (III) which undergoes reductive elimination to produce the 1,3-envnes 2 (Scheme 1). In the cases of the reactions of 1 with alkyl-substituted ethynyl iodides, a mechanism in Scheme 1 would be favored at 80 °C, but room temperature reaction provided the 1,3-diynes 3 via the formation of dialkynylpalladium intermediate (II) followed by reductive elimination. Aryl-substituted ethynyl iodides underwent the coupling reaction smoothly at 50 °C to give the 1,3-envnes 2 in maximum yields, whereas the higher reaction temperature than 50 °C caused to reduce the yield of 2. Room temperature reaction of 1 with aryl-substituted ethynyl iodides yielded the 1,3-diynes 3 in high yields,²⁷ which indicates the formation of dialkynylpalladium intermediate (II) would be faster than that of intermediate (III).

A typical reaction procedure for the preparation of **2a** is as follows. To a DMF (5 mL) solution of β_{β} -difluoro- α -phenylvinylstannane (0.100 g, 0.230 mmol) and 1-iodo-1-heptyne (0.063 g, 0.270 mmol) was added Pd(PPh₃)₄ (0.023 mmol) and CuI (0.023 mmol), and the reaction mixture was heated at 80 °C for 1.5 hours. After the reaction mixture was quenched with water, the solution was extracted with ether (15 mL \times 2). The ether solution was dried and chromatographed on SiO₂ column. Elution with *n*-hexane and EtOAc (20:1) provided 0.043 g of **2a** in 80% yield. **2a**: oil: ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.38-7.34 (m, 2H), 7.30-7.26 (m, 1H), 2.42-2.38

Scheme 1. A plausible mechanism for the formation of 2 and 3

(m, 2H), 2.24 (t, J = 7.3 Hz, 2H), 0.94-0.88 (m, 7H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 159.3 \text{ (dd}, J = 298 \text{ Hz}), 128.9, 128.4, 127.7,$ 127.6, 95.7 (t, J = 6 Hz), 31.0, 28.1, 22.2, 19.3, 13.9; ¹⁹F NMR (376 MHz, CDCl₃, internal standard CFCl₃) δ -77.90 (d, J = 9.4 Hz, 1F), -82.01 (d, J=9.4 Hz, 1F); MS, m/z (relative intensity) 234 (M⁺, 68); Anal. Calcd for C₁₅H₁₆F₂: C, 76.90; H, 6.88. Found: C, 76.68; H, 6.85.

Acknowledgments. This Article is dedicated with respect and affection to the late Professor Chi Sun Hahn, an inspiring teacher and mentor, for his contributions to the field of organic chemistry in Korea. This work was supported by the Basic Research Grant (2009-0073839) funded by the National Research Foundation of Korea.

References

- 1. Mikaelin, G. S.; Gybin, A. S.; Smit, W. A.; Caple, R. Tetrahedron Lett. 1985, 26, 1269.
- 2 Zweifel, G.; Rajagopalan, S. J. Am. Chem. Soc. 1985, 107, 700.
- 3. Gabriele, B.; Salerno, G.; Lauria, E. J. Org. Chem. 1999, 64, 7687.
- Gabriele, B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351. 4.
- Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68, 7853. 5. 6. Normant, J. F.; Commercon, A.; Villieras, J. Tetrahedron Lett.
- 1975, 16, 1465. 7. Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett. 2003, 5, 1597.
- Shi, J.; Zeng, X.; Negishi, E. Org. Lett. 2003, 5, 1825.
- 9. Xu, Z.-Q.; Zamlicka, J. Tetrahedron 1997, 53, 5389.
- 10. Eddarir, S.; Francesch, C.; Mestdagh, H.; Rolando, C. Bull. Soc. Chim. Fr. 1997, 8-9, 741
- Saito, S.; Kawasaki, T.; Tsuboya, N.; Yamamoto, Y. J. Org. Chem. **2001**, *66*, 796. 12. Wang, Y.; Xu, J.; Burton, D. J. J. Org. Chem. **2006**, *71*, 7780.
- 13. Silveira, C. C.; Braga, A. L.; Vieira, A. S.; Zeni, G. J. Org. Chem. 2003, 68, 662 and reference cited therein.
- Yang, Z.-Y.; Burton, D. J. Tetrahedron Lett. 1990, 31, 1369. 14
- 15. Yang, Z.-Y.; Burton, D. J. J. Fluorine Chem. 1991, 53, 307.
- 16. Eddarir, S.; Francesch, C.; Mestdagh, H.; Rolando, C. Tetrahedron Lett. 1990, 31, 4449.
- 17. Eddarir, S.; Mestdagh, H.; Rolando, C. Tetrahedron Lett. 1991, 32, 69
- 18. Percy, J.; Wilkes, R. D. Tetrahedron 1997, 53, 14749.
- 19. Yoshida, M.; Yoshikawa, S.; Fukuhara, T.; Yoneda, N.; Hara, S. *Tetrahedron* **2001**, *57*, 7143. 20. Mei, Y.-Q.; Liu, J.-T. *Tetrahedron* **2008**, *64*, 8801
- Yoshida, M.; Komata, A.; Hara, S. Tetrahedron 2006, 62, 8636. 21.
- Zapata, A. J.; Gu, Y.; Hammond, G. B. J. Org. Chem. 2000, 65, 227.
- 23. Burton, D. J.; Lee, T. M. J. Fluorine Chem. 1976, 8, 189.
- 24. Tellier, F.; Sauvetre, R.; Normant, J.-F. Tetrahedron Lett. 1986, 27, 3147
- 25. Ichikawa, J.; Ikeura, C.; Minami, T. J. Fluorine Chem. 1993, 63, 281.
- 26. Choi, J. H.; Jeong, I. H. Tetrahedron Lett. 2008, 49, 952
- 27. Damle, S. V.; Seomoon, D.; Lee, P. H. J. Org. Chem. 2003, 68, 7085.