DOI QR코드

DOI QR Code

CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop

초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석

  • Yoon, Churl (Nuclear Hydrogen Reactor Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Hong, Sung-Deok (Nuclear Hydrogen Reactor Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Noh, Jae-Man (Nuclear Hydrogen Reactor Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Yong-Wan (Nuclear Hydrogen Reactor Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Chang, Jong-Hwa (Nuclear Hydrogen Reactor Technology Development Division, Korea Atomic Energy Research Institute)
  • 윤철 (한국원자력연구원 수소생산원자로기술개발부) ;
  • 홍성덕 (한국원자력연구원 수소생산원자로기술개발부) ;
  • 노재만 (한국원자력연구원 수소생산원자로기술개발부) ;
  • 김용완 (한국원자력연구원 수소생산원자로기술개발부) ;
  • 장종화 (한국원자력연구원 수소생산원자로기술개발부)
  • Received : 2009.12.07
  • Accepted : 2010.03.12
  • Published : 2010.05.01

Abstract

A medium-scale helium loop that can simulate a VHTR (very-high-temperature reactor) is now under construction at the Korea Atomic Energy Research Institute. The heaters of the test helium loop electrically heat helium fluid up to $950^{\circ}C$ at pressures of 1 to 9 MPa. To optimize the design specifications of the experimental helium loop, the conjugate heat transfer in the high-temperature helium heater was analyzed by performing a CFD simulation. The analysis results indicate that the maximum temperature does not exceed the allowable limit. It is confirmed that the thermal characteristics of the loop with the given geometry satisfy the design requirements.

한국원자력연구원에서는 초고온가스로를 모사할 수 있는 중형 헬륨 회로를 건설 중에 있다. 이 실험헬륨 회로에서 두 개의 전기 가열기가 헬륨 유체를 1 ~ 9 MPa 의 압력 하에서 $950^{\circ}C$ 까지 가열하게 된다. 이 실험 헬륨 회로의 설계 사양을 최적화하기 위하여, 본 연구에서는 두 개의 가열기 중 하류에 위치한 고온헬륨가열기 안의 복합열전달 현상을 전산유체역학으로 해석하였다. 해석 결과에서 헬륨 가열기 내 최대 온도는 허용 한계를 넘지 않았고, 이로써 선정된 기하구조의 열적 특성은 설계요건을 만족함이 확인되었다.

Keywords

References

  1. Chang, J. H., Kim, Y. W., Lee, K. Y., Lee, Y. W., Lee, W. J., Noh, J. M., Kim, M. h., Lim, H. S., Shin, Y. J., Bae, K. K. and Jung, K. D., 2007, “A Study of a Nuclear Hydrogen Production Demonstration Plant,” Nuclear Engineering and Technology, Vol. 39, No. 2, p 111-122. https://doi.org/10.5516/NET.2007.39.2.111
  2. Bischoff, B. L., Trowbridge, L. D., Mansur, L. K. and Forsberg, C. W., 2004, “Production of Hydrogen Using Nuclear Energy and Inorganic Membranes,” Proc. of ICAPP'04, Pittsburg, USA, pp. 2137-2145.
  3. Hong, S. D., Oh, D. S., Kim, J. H., Kim, Y. W., Lee, W. J. and Chang, J. H., 2006, “Design of a Small Scale High Temperature Gas Loop for Developing a Process Heat Exchanger of Nuclear Hydrogen Production Module,” KSME Spring Meeting, ROK, pp. 2067-2072.
  4. Hong, S. D., Kim, J. H., Kim, C. S., Kim, Y. W. and Chang, J. H., 2008, “Development of a Compact Nuclear Hydrogen Coupled Components Test Loop,” KSME Autumn Meeting, ROK, pp. 2850-2855.
  5. Kim, Y.W., Kim, C. S., Hong, S. D., Lee, W. J. and Chang, J. H., 2009, “A High Temperature Gas Loop to Simulate VHTR and Nuclear Hydrogen Production System,” 20th Int. Conference on Structural Mechanics in Reactor Technology (SMiRT 20), Finland, Paper 1870.
  6. CFX-11.0: Solver Theory, 2008, ANSYS Canada Ltd., Canada. (Web form)
  7. Hong, S. D., Yoon, C., Lim, H. S., Kim, Y. W. and Chang, J. H., 2009, "The Design and Analytical Validation of a C/C Composite Helium Heater for a VHTR Simulated Experimental Loop," KNS Autumn Meeting, Gyeongju, ROK, pp. 103-104.