DOI QR코드

DOI QR Code

Numerical Investigation of Effect of Surface Roughness in a Microchannel

미소 채널에서의 표면 거칠기 영향에 대한 수치적 연구

  • 신명섭 (한양대학교 기계공학부) ;
  • 변성준 (한양대학교 기계공학부) ;
  • 윤준용 (한양대학교 기계정보경영공학부)
  • Received : 2010.01.15
  • Accepted : 2010.03.04
  • Published : 2010.05.01

Abstract

In this paper, lattice Boltzmann method(LBM) results for a laminar flow in a microchannel with rough surface are presented. The surface roughness is modeled as an array of rectangular modules placed on the top and bottom surface of a parallel-plate channel. The effects of relative surface roughness, roughness distribution, and roughness size are presented in terms of the Poiseuille number. The roughness distribution characterized by the ratio of the roughness height to the spacing between the modules has a negligible effect on the flow and friction factors. Finally, a significant increase in the Poiseuille number is observed when the surface roughness is considered, and the effects of roughness on the microflow field mainly depend on the surface roughness.

본 연구에서는 격자볼츠만 방법(LBM)을 이용하여 미소채널 내의 유동이 완전 발달 층류유동일 때, 미소채널 내에서의 표면 거칠기 영향에 대하여 수치계산을 수행하였다. 미소채널 내에서 표면 거칠기의 영향을 분석하기 위하여 표면 거칠기의 높이($\varepsilon$), 폭(w), 간격(s)을 조절하여 미소채널에서의 마찰계수(f), 포와이즈수(Po)와 거시적 이론값과 비교하였다. 미소채널에서의 표면 거칠기의 높이가 증가함에 따라 거시적 이론값(Po=24)에 비해서 수치해석으로부터 예측된 값($25{\leq}Po{\leq}29$)이 높게 나타났으며, 표면 거칠기의 폭과 간격은 표면 거칠기의 높이에 비해 미소채널 내부 유동의 변화에 큰 영향을 주지 않는 것을 알 수 있었다. 이 결과로부터 미소채널 내부 유동에서는 표면 거칠기의 영향으로 거시적 층류유동과는 다른 유동현상이 나타난다는 것을 알 수 있었다.

Keywords

References

  1. Rosa, P., Karayiannis, T.G. and Collins, M.W, 2009, “Single-Phase Heat Transfer in Microchannels : The Importance of Scaling Effects,” Applied Thermal Engineering, Vol. 29, No. 17-18, pp. 3447-3468. https://doi.org/10.1016/j.applthermaleng.2009.05.015
  2. Papautsky, I., Brazzle, J., Ameel, T. and Frazier., A. B., 1998, “Laminar Fluid Behavior in Microchannels Using Micropolar Fluid Theory,” Sensors and Actuators, Vol. 73, No. 1-2, pp. 101-108.
  3. Morini, G.L, 2004, “Single-Phase Convective Heat Transfer in Microchannels : A Review of Experimental Results,” International Journal of Thermal Sciences, Vol. 43, No. 7, pp. 631-651. https://doi.org/10.1016/j.ijthermalsci.2004.01.003
  4. Wu, P. and Little, W.A, 1983, “Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule–Thomson Refrigerators,” Cryogenics, Vol. 23, No. 5, pp. 273-277. https://doi.org/10.1016/0011-2275(83)90150-9
  5. Wu, P. and Little, W.A, 1984, “Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators,” Cryogenics, Vol. 24, No. 8, pp. 415-419. https://doi.org/10.1016/0011-2275(84)90015-8
  6. Wilding, P., Shoffner, M.A. and Kircka, L.J., 1994, “Manipulation and Flow of Biological Fluids in Straight Channels Micromachined in Silicon,” Clinical Chemistry, Vol. 40, pp. 43-47.
  7. Mala, G.M. and Li, D., 1999, “Flow Characteristics of Water in Microtubes,” International Journal of Heat and Fluid Flow, Vol.20, No.2, pp. 142-148. https://doi.org/10.1016/S0142-727X(98)10043-7
  8. Hu, Y., Werner, C. and Li, D., 2003, "Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels," Trans. ASME Journal of Fluids Engineering, Vol. 125, No. 5, pp. 871-879. https://doi.org/10.1115/1.1598993
  9. Sun, H. and Faghri, M., 2003, "Effect of Surface Roughness on Nitrogen flow in a Microchannel Using the Direct Simulation Monte Carlo Method," Numerical Heat Transfer - Part A, Vol. 43, No. 1, pp. 1-8. https://doi.org/10.1080/10407780307302
  10. Gad-el-Hak, M., 1999 "The Fluid Mechanics of Microdevices : The Freeman Scholar Lecture," Trans. ASME Journal of Fluids Engineering, Vol. 121, No. 1, pp. 5-33. https://doi.org/10.1115/1.2822013
  11. Chen, S. and Doolen, G.D., 1998, “Lattice Boltzmann Method for Fluid Flows," Annual Review of Fluid Mechanics, Vol. 30, pp.329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  12. Yoon, J.Y., Han, G.S. and Byun, S.J., 2005, “Optimization of Passive Mixer for Enhanced Mixing in a Micro-channel by Using Lattice Boltzmann Method,” Trans. of the KSME(A), Vol. 29, No. 5, pp.707-715.
  13. Bhatnagar, P.L, Gross, E.P. and Krook, M., 1954, "A Model for Collision Processes in Gases. I : Small Amplitude Processes in Charged and Neutral One-Component System," Physical Review, Vol. 94, No. 5, pp. 511-525. https://doi.org/10.1103/PhysRev.94.511
  14. Qian, Y.H., d'Humieres, D. and Lallemand, P., 1992, "Lattice BGK Models for Navier-Stokes Equation," Europhysics Letters, Vol. 17, No. 6, pp. 479-484. https://doi.org/10.1209/0295-5075/17/6/001
  15. Li, Z., Du, D. and Guo, Z., 2003, "Experimental Study on Flow Characteristics of Liquid in Circular Microtubes," Microscale Thermophysical Engineering, Vol. 7, No. 3, pp. 253-265. https://doi.org/10.1080/10893950390219083
  16. Succi, S., 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press Oxford, New York, pp. 77-96.

Cited by

  1. Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method vol.37, pp.7, 2013, https://doi.org/10.3795/KSME-B.2013.37.7.683
  2. Numerical Investigation of Pollutant Dispersion in a Turbulent Boundary Layer by Using Lattice Boltzmann-Subgrid Model vol.35, pp.2, 2011, https://doi.org/10.3795/KSME-B.2011.35.2.169
  3. Numerical Investigation of Mixing Characteristics in Cavity Flow at Various Aspect Ratios vol.39, pp.1, 2015, https://doi.org/10.3795/KSME-B.2015.39.1.079