DOI QR코드

DOI QR Code

Motion of Microbeads Propelled by Bacterial Chemotaxis

박테리아의 주화성에 의한 미세입자의 운동

  • Kim, Dong-Wook (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Young-Won (BK21 School for Creative Engineering Design of Next Generation Mechanical and Aerospace System, Seoul Nat'l Univ.) ;
  • Yoo, Jung-Yul (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 김동욱 (서울대학교 기계항공공학부) ;
  • 김영원 (서울대학교 차세대 기계항공시스템 창의설계 인력양성사업단) ;
  • 유정열 (서울대학교 기계항공공학부)
  • Received : 2010.01.07
  • Accepted : 2010.03.25
  • Published : 2010.05.01

Abstract

Recently, several research groups have been investigating the motion of flagellated bacteria, with the aim of examining the feasibility of using bacterial chemotaxis as an efficient power source for microactuators. In this study, microparticle-tracking velocimetry ($\mu$-PTV) is used for investigating the motion of fluorescent microbeads propelled by bacterial chemotaxis. Flagellated bacteria, Serratia marcescens, are spontaneously attached to the surface of the fluorescent polystyrene (PS) microbeads in an aqueous culture. The microbeads thus treated are injected into the test medium, which contains the solidified chemoattractant L-aspartate. With time, the particles slowly move toward the zone in which the L-aspartate concentration is high. This study shows that chemotaxis of flagellated bacteria can be applied as an efficient power source for microactuators.

Micro actuator의 동력원으로 박테리아 주화성을 기반으로 한 편모박테리아 운동은 널리 연구되고 있다. 본 연구에서는 마이크로입자 추적유속계($\mu$-PTV)를 이용하여 박테리아 주화성에 의해 추진되는 형광입자의 움직임을 분석하였다. 일반적으로 활발한 운동성을 지니고 있는 편모 박테리아 중 Serratia marcescens가 배양액속에서 형광 폴리스티렌 미세입자 표면에 자발적으로 붙게 된다. 박테리아가 부착된 미세입자를 고형화된 화학적 유인물질 L-aspartate가 담겨져 있는 유체 속으로 주입하고, 시간에 따라 입자들이 서서히 L-aspartate가 높은 농도를 가지는 구역으로 이동하는 것을 관찰하였다. 본 연구의 결과로 편모박테리아가 micro actuator의 효율적인 동력원 개발에 적용될 수 있는 가능성을 제시하였다.

Keywords

References

  1. Behkam, B. and Sitti, M., 2007, "Bacterial Flagella-based Propulsion and On/off Motion Control of Microscale Objects," Appl. Phys. Lett., Vol. 90, No. 2, 023902. https://doi.org/10.1063/1.2431454
  2. Behkam, B. and Sitti, M., 2008, "Effect of Quantity and Configuration of Attached Bacteria on Bacterial Propulsion of Microbeads," Appl. Phys. Lett., Vol. 93, No. 22, 223901. https://doi.org/10.1063/1.3040318
  3. Jeon, H., Lee, Y., Jin, S., Koo, S., Lee, C., Yoo, J., 2009, "Quantitative Analysis of Single Bacterial Chemotaxis Using a Linear Concentration Gradient Microchannel," Biomed. Microdevices, Vol. 11, No. 5, pp. 1135-1143. https://doi.org/10.1007/s10544-009-9330-8
  4. Kim, M. J. and Breuer, K. S., 2008, "Microfluidic Pump Powered by Self-Organizing Bacteria," Small, Vol. 4, No. 1, pp. 111-118. https://doi.org/10.1002/smll.200700641
  5. Park, S., Wolanin, P. M., Yuzbashyan, E. A., Lin, H., Darnton, N. C., Stock, J. B., 2003, "Influence of Topology on Bacterial Social Interaction," Proc. Natl. Acad. Sci. USA, Vol. 100, No. 24, pp. 13910-13915. https://doi.org/10.1073/pnas.1935975100
  6. Pandey, G. and Jain, R. K., 2002, "Bacterial Chemotaxis toward Environmental Pollutants: Role in Bioremediation," Appl. Environ. Microbiol., Vol. 68, No. 12, pp. 5789-5795. https://doi.org/10.1128/AEM.68.12.5789-5795.2002
  7. Steager, E., Kim, C., Patel, J., Bith, S., Naik, C., 2007, "Control of Microfabricated Structures Powered by Flagellated Bacteria Using Phototaxis," Appl. Phys. Lett., Vol. 90, No. 26, 263901. https://doi.org/10.1063/1.2752721