DOI QR코드

DOI QR Code

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구

Study on Torsional Strength of Induction-Hardened Axle Shaft

  • 투고 : 2009.04.24
  • 심사 : 2010.03.03
  • 발행 : 2010.05.01

초록

고주파열처리(induction hardening)는 엔진의 구동력을 차동장치에서 바퀴까지 전달해주는 부품인 액슬축(axle shaft)의 비틀림 강도를 증가시키기 위해 적용되는 열처리 방법이다. 고주파 열처리 과정의 급속가열과 급속냉각은 소재에 잔류응력과 물성치를 변화시켜 액슬축의 허용 전달토크를 변화시킨다. 본 연구에서는 고주파 열처리한 액슬축의 잔류응력의 분포와 열처리 깊이에 따른 비틀림 강도 변화를 열물성 및 상변태를 고려한 유한요소 해석을 통해 예측하였으며 이를 시험과 비교하였다.

Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.

키워드

참고문헌

  1. Metals Handbook Ninth Edition - Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol. 1, ASM International, pp. 455-542.
  2. Yun. J. O. and Yang. Y. S., 2004, “A Study on the Flat-Type Induction Heating of Steel Plate,” Trans. of the KSME(A), Vol. 28, No. 7, pp. 948-954. https://doi.org/10.3795/KSME-A.2004.28.7.948
  3. Dominique Coupard, Thierry Palin-luc, Philippe Bristiel, Vincent Ji and Christian Dumas, 2008, “Residual Stresses in Surface Induction Hardening of Steels: Comparison Between Experiment and Simulation,” Materials Science and Engineering A, Vol. 487, pp. 328-339 https://doi.org/10.1016/j.msea.2007.10.047
  4. Cajner, F., Smoljan, B. and Landek,D., 2004, “Computer Simulation of Induction Hardening,” Journal of Materials Processing Technology, Vol. 157, pp. 55-60 https://doi.org/10.1016/j.jmatprotec.2004.09.017
  5. George E. Totten, Maurice A. H. Howes and Tatsuo Inoue, 2002, Handbook of Residual Stress and Deformation of Steel, ASM International, pp. 220-295.
  6. Ko. J. B., Kim. W. K. and Won. J. H., 2005, "The effect on Fatigue Strength of Induction Hardened Carbon Steel," Trans. of Korean Society of Machine Tool Engineers, Vol. 14, No.6, pp. 83-87.
  7. ABAQUS User’s Manual, 2008, Version 6.8, Dassault Systemes Simulia Corp, Providence, RI,USA.

피인용 문헌

  1. Stress Modeling of the Laser Drilling Process in Carbon Steel vol.37, pp.7, 2013, https://doi.org/10.3795/KSME-A.2013.37.7.857
  2. An Optimal Frequency Condition for An Induction Hardening for An Axle Shaft using Thermal-Electromagnetic Coupled Analysis vol.40, pp.2, 2016, https://doi.org/10.3795/KSME-A.2016.40.2.207
  3. FE-Simulation and Measurement of the Residual Stress in Al6061 During T6 Heat Treatment vol.35, pp.7, 2011, https://doi.org/10.3795/KSME-A.2011.35.7.717
  4. A Study on the Structural Strength Fatigue Improvement of an Axle Shaft for a 3.5-Ton Commercial Vehicle vol.17, pp.3, 2018, https://doi.org/10.14775/ksmpe.2018.17.3.071