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HYERS-ULAM STABILITY OF CUBIC-QUARTIC FUNCTIONAL
EQUATIONS ON RANDOM NORMED SPACES

SUN YOUNG JANG? AND KYUNG MoOK KANGP

ABSTRACT. We introduce mixed cubic-quartic functional equations. And using the
fixed point method, we prove the generalized Hyers-Ulam stability of cubic-quartic
functional equations on random normed spaces.

1. INTRODUCTION

In almost all areas of mathematical analysis, we can raise the following funda-
mental question: When is it true that a mathematical object satisfying a certain
property approximately must be close to an object satisfying the property exactly?
If we turn our attention to the case of functional equations, we can particularly ask
the question when the solutions of an equation differing slightly from a given one
must be close to the solution of the given equation.

The stable problem of functional equations is originated from such a fundamental
question. In connection with the above question, S. M. Ulam [28] raised a question
concerning the stability of homomorphisms:

Let Gy be a group and G9 a metric group with a metric d(-,-). Given ¢ > 0,
does there exist a § > 0 such that if a function h : G; — G5 satisfies the inequality
d(h(zy), h(x)h(y)) < § for all 7,y € Gy, then there is a homomorphism H : G; — G
with d(h(z), H(z)) < € for all z € Gy 7 Hyers [9] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized
by Acki [1] for additive mappings and by Th.M. Rassias [21] for linear mappings
by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [21]
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has provided a lot of influence in the development of what we call the generalized
Hyers-Ulam stability or the Hyers-Ulam-Rassias stability of functional equations.
A generalization of the Th.M. Rassias theorem was obtained by G&vruta [8] by
replacing the unbounded Cauchy difference by a general control function in the
spirit of Th.M. Rassias’ approach.

The additive functional equation

fz+y)=f(x)+ fly)

is one of the most famous functional equations, which is called the Cauchy equation.
Every solution of the additive equation is called an additive function. The functional
equation
fle+y)+ fz - y) = 2f(z) + 2/(y)
is called a quadratic functional equation. In particular, every solution of the qua-
dratic functional equation is said to be a guadratic function. A generalized Hyers-
Ulam stability problem for the quadratic functional equation was proved by Skof
[24] for mappings f : X — Y, where X is a normed space and Y is a Banach space.
Cholewa (3] noticed that the theorem of Skof is still true if the relevant domain X is
replaced by an abelian group. Czerwik [4] proved the generalized Hyers-Ulam stabil-
ity of the quadratic functional equation. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are
many interesting results concerning this problem (see [10], [14]-[16], [19]-[23]). In
the present paper, we investigate the generalized Hyers-Ulam stability for the mixed
cubic-quartic functional equations in random normed spaces.
Jun and Kim [13] introduced the following cubic functional equation

fRz+y)+ f(2x ~y) =2f(x +y) + 2f(z — y) + 12f(2)

and they established the general solution and the generalized Hyers-Ulam stability
for the cubic functional equation. The function f(z) = z® satisfies the above func-
tional equation, which is thus called a cubic functional equation. Every solution
of the cubic functional equation is said to be a cubic mapping. The oldest quartic
functional equation was introduced by J.M.Rassias [?]:

fE+2y)+ fz-2y) =4(f(z+y) + flz —y)) + 24f(y) — 6/ ()

In fact they proved that a mapping f between real vector spaces X and Y is a
solution of the above equation if and only if there exists a unique symmetric multi-
additive mapping @ : X* — Y such that f(z) = Q(z,z,z,z) for all z. It is easy
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to show that the function f(x) = z? satisfies the above functional equation, which
is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping.

We deal with the following functional equation deriving from quartic and cubic
functions:

AfBx+y)+fBz~y)) = 12(f2x+y) + f(2z —y))
—12(f(z +y) + f(z —v))
—8f(y) — 192f(z) + f(2y) + 30 (2x)
It is easy to see that the function f(z) = az* + bx3 is a solution of the functional
equation. Gordji, Ebadian and Zolfaghari [5] investigated the general solution and
the generalized Hyers-Ulam stability of the cubic-quartic functional equation.

The generalized Hyers-Ulam stability of different functional equations in random
normed and fuzzy normed spaces has been recently studied in( [18], [15]). It should
be noticed that in all these papers the triangle inequality is expressed by using
the strongest triangular norm Tys. In the sequel, we adopt the usual terminology,
notations and conventions of the theory of random normed spaces, as in |25, 26, 27].

We regard that AT is the space of distribution functions, that is, the space of
all mappings F' : RU {—o0,00} — [0,1] such that F is left-continuous and non-
decreasing on R, F(0) = 0 and F'(4+00) = 1. DT is a subset of A consisting of
all functions F' € AT for which 7 F(400) = 1, where [” f(z) denotes the left limit
of the function f at the point z, that is, [~ f(z) = lim,_,,- f(¢). The space A" is
partially ordered by the usual point-wise ordering of functions, ie., FF < G if and
only if F(t) < G(t) for all ¢ in R. The maximal element for A™ in this order is the
distribution function gg given by

0, ift<0,
1) = -
fo(t) {1, ift> 0.

Definition 1.1. A mapping T : {0,1] x [0, 1] — [0, 1] is a continuous triangular norm
(briefly, a continuous ¢t-norm) if T satisfies the following conditions:

{a) T is commutative and associative;

(b) T is continuous;

(¢) T(a,1) =afor all a € [0, 1];

(d) T(a,b) < T(c,d) whenever a < c and b < d for all a,b,¢,d € [0,1].

Typical examples of continuous ¢-norms are Tp(a,b) = ab, Ta(a,b) = min(a,b)
and Tr(a,b) = max(a + b — 1,0) (the Lukasiewicz t-norm). Recall (see [12]) that
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if T is a t-norm and {z,} is a given sequence of numbers in [0, 1}, then T2, z; is
defined recurrently by TL,z; = 71 and T z; = T(T}2; :r,,a:n) forn > 2. T, x;
is defined as T Zp4yi—1. It is known ([26]) that for the Lukasiewicz t-norm the
following implication holds:

lim (TL)2 Zntic1 =1 <= Z(l — Zp) < 00.

n—00
n=1

Definition 1.2. A random normed space (briefly, RN-space) is a triple (X, pu,T),
where X is a vector space, T is a continuous t-norm and p is a mapping from X
into D* such that the following conditions hold:

(RN1) p(t) = €o(t) for all t > 0 if and only if z =0

(RN2) pag(t) = /J'a:(]'ct;[) forallz € X, a #0;

(RN3) poty(t + 8) > T(pa(t), py(s)) for all z,y € X and all t,s > 0.

Let (X,|-|) be a normed space. Then we can define a random normed space

(X, 1, Tnr) as follows:

t+ allz||
t) = — 0

forall t > 0, for b > a > 0, and Ty is the minimum ¢-norm.

Definition 1.3. Let (X, u, T) be a RN-space.

(1) A sequence {z,} in X is said to be convergent to z in X if, for every ¢ > 0
and A > 0, there exists a positive integer N such that pz, —z(e) > 1— A
whenever n > N.

(2) A sequence {z,} in X is called a Cauchy sequence if, for every ¢ > 0 and
A > 0, there exists a positive integer N such that py, s (€) > 1—X whenever
n>m2>N.

(3) A RN-space (X, u,T) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

Theorem 1.4 ([26]). If (X,p,T) is a RN-space and {z,} is a sequence such that

Tn — T, then limp_,o0 P, (t) = pz(t) almost everywhere.

Theorem 1.5 ([27]). Let (X,d) be a complete generalized metric space and let
J: X — X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x € X, either

d(J"z, J*tz) = 00

for all nonnegative integers n or there erists a nonnegative integer ng such that
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(1) d(J"z, J"Hz) < o0, Yn > ngp;

(2) the sequence {J™z} converges to a fized point y* of J;

(8) y* is the unique fized point of J in the set Y = {y € X | d(J™z,y) < oo},
(4) d(y,y*) < 2 d(y, Jy) for ally €Y.

2. THE STABILITY OF THE MIXED CUBIC-QUARTIC FUNCTIONAL
EqQuaTiON: ODD CASE

Through this paper let (Y, u,T) be a complete RN-space. For a given mapping
f: X =Y, we define
Df(z,y) = 4(fBz+y)+ f(B3z—y)) —12(/(2z +y)

+f(2z - y)) +12(f(z +y) + f(z ~y)) — f(2y)
+8f(y) — 30f(2x) + 192f(x)

for all z,y € X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of
functional equation D f(z,y) = 0: odd case.

Theorem 2.1. Let X be a linear space and ¢ : X2 — [0,00) be a function such that
there exists an L < 1 with L
vl(z,y) < g (22,2)

forallz,y€ X. Let f: X —> Y be an odd mapping satisfying
(2.1) Hosey) ) 2 ;oo (Pt(m, »
forallz,y € X and allt > 0. Then C(z) := limy,—00 8" f (5’%) ezists for eachx € X
and defines a cubic mapping C : X — Y such that

(8—8L)t
(8 — 8L)t + Lp(0,x)

(2.2) Bf@)-C(z) () =
forallx € X and allt > 0.

Proof. Letting x = 0 in (2.1), we get

t
ap) ()2 e
Hsew-s1w) () 2 705

forally € X and all ¢t > 0.

Replacing y by x in the above formula, we get

t
2.3 ERE R )
(2.3) Hf(22)-8f(a) (£) 2 t+ ¢(0,x)

forallz € X and all £ > 0. Let f: X — Y be a mapping and consider the set
S={f:X->Y}
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and introduce the generalized metric on S:

t
=] : > — ¥ X, Vit 0 s
d(f,h) = inf {V eRy ;,Lf(z)_h(z)(l/t) Z 17 200, (L‘)’ T € > }

where, as usual, inf ¢ = 4+c0. Then (S, d) is a complete generalized metric space(See

20)-

And we consider the linear mapping J : S — S such that

J§(22) = 8f()
for all z € X. Let f,h € S be given such that d(f,h) =¢. Then

t
>
Hf(x)—h(zx) (5t) i+ (p(O, (E)

for all z € X and all ¢t > 0. Hence

1 f(2z)—Jh(2z) (LEL) = Wgf(c)—8h(z)(LED)

L
= Pf=)-ha) | g

Lt
8

L 40(0,2)

Lt
8

L 4 Ly(0,2x)

__t

t + ¢(0,2zx)

for all z € X and all £ > 0. So d(f, h) = € implies that d(J f, Jh) < Le. This means
that

v

v

d(Jf,Jh) < Ld(f, h)

for all f,heS.
It follows from (2.3) that

L t
H@-8/$\ 3% ) 2 TT 0(0,2)

for all z € X and all t > 0. So d(f,Jf) < &.
By Theorem 1.5, there exists a mapping C : X — Y satisfying the following:

(1) C is a fixed point of J, i.e.,

(2.4) C(2z) = 8C(z)
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forallz € X. Since f: X — Y isodd, C': X — Y is an odd mapping. The
mapping C is a unique fixed point of J in the set

M={feS:d(f,h) < oo}

This implies that C is a unique mapping satisfying (2.4) such that there

exists a v € (0, 00) satisfying

t
) > —
Hi@-c@ W) 2 5 oh s

forallz € X and all t > 0;
(2) d(J™f,C) — 0 as n — oo. This implies the equality

lim 8" f (;—n) = C(a)

n—r00
for all z € X
(3) d(f,C) < t27d(f, J ), which implies the inequality

L
< .

This implies that the inequality (2.2) holds.
By (2.1),

n
z P —
Fonns(ge) 870 2 3 ¢ (3%, 3%)

forallz,y € X,allt >0 and all n e N, So

t

. >__ 8
Heos(ge ) W2 T G

t
for all z,y € X, all £ > 0 and all n € N. Since lim,oo I:ﬁ'—';m = 1 for all
z,y € X and all £ > 0, e

LDC(zy) (8) =1
for all z,y € X and all £ > 0. Thus the mapping C : X — Y is cubic, as desired. O

Corollary 2.2. Let X be a normed vector space with norm || - || and let § > 0 and
p be a real number with p > 3. Let f: X — Y be an odd mapping salisfying
t
2.5 u t) >
29 o1t O 2 T3+ Tp)
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Jorallz,y € X and allt > 0. Then C(z) := limp_,00 8" f (E’%) ezists for eachx € X
and defines a cubic mapping C : X — Y such that

(2P — 8)t
>
Hi(z)-c(=) () 2 (2p — 8)t + 20||x||?

forallz e X and allt > 0.

Proof. The proof follows from Theorem 2.1 by taking

o(z,y) = 0(|lzll” + llyllP)
for all z,y € X. Then we can choose L = 2377 and we get the desired result. d

Theorem 2.3. Let X be a linear space and let ¢ : X2 — [0,00) be a function such
that there exists an L < 1 with

p(z,y) < 8Ly (; %)

forallz,y€ X. Let f : X — Y be an odd mapping satisfying (2.1). Then
NN PP
Clz) = Jlim = f(2"2)
exists for each z € X and defines a cubic mapping C : X — Y such that

(8 — 8L)t
8L)t + (0, )

(2.6) Hi@z)-C() (1) 2 B
forallz € X and allt > 0.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
2.1. Consider the linear mapping J : S — S such that

Tf@) = 5f (20)
for all z € X.

Let f,h € S be given such that d(f, h) = &. Then

t
> -
Bf(z)—h(z) (EL) = [T o(0.2)

for all z € X and all t > 0. Hence

if@)-in=)(Let) = B1gaz)-Lnr) (Let)

= Wf2z)-h(2c) (8LEL)
© 8Lt
8Lt + ¢ (0, 2z)
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8Lt
>
~ 8Lt+8Lyp(0,z)
t
t+ (0, x)

for all z € X and all t > 0. So d(f, h) = € implies that d(J f, Jh) < Le. This means
that

d(Jf,Jh) < Ld(f,h)

forall f,heS.
It follows from (2.3) that

1 t
forallz € X and all t > 0. So d(f,Jf) < §.

By Theorem 1.5, there exists a mapping C : X — Y satisfying the following:
(1) C is a fixed point of J, i.e.,

C (2z) = 8C(x)

forallz € X. Since f: X - Y isodd, C : X — Y is an odd mapping. The
mapping C is a unique fixed point of J in the set

M={feS:dfh) < oo}.

This implies that C is a unique mapping satisfying (2.4) such that there exists a
v € (0, 00) satisfying

t
>
Hi@-c@ V) 2 20,2)

forallz € X and all ¢t > 0;
(2) d(J™f,C) — 0 as n — oo. This implies the equality

lim if(2":1:) = C(z)

n—00 {7
for all z € X
(3) d(£,C) < :d(f, Jf), which implies the inequality
1
< .

This implies that the inequality (2.6) holds.
The rest of the proof is similar to the proof of Theorem 2.1. |
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Corollary 2.4. Let X be a normed vector space with norm || - ||, and let 0 > 0 and
p be a real number with 0 < p < 3. Let f: X — Y be an odd mapping satisfying
(2.5). Then C(z) := limy_o0 g= f (2"z) exists for each © € X and defines a cubic
mapping C : X — Y such that
— 9P
Bf(z)-Cle) (1) 2 O S)t _i 2)2"90“,,
forallz € X and allt > 0.

Proof. The proof follows from Theorem 2.3 by taking

¢(z,y) = 0(ll=ll” + llylI”)

for all z,y € X. Then we can choose L = 2P~3 and we get the desired result. O

3. THE STABILITY OF THE MIXED CUBIC-QUARTIC FUNCTIONAL
EqQuATION: EVEN CASE

Using the fixed point method, we prove the generalized Hyers-Ulam stability of
the functional equation D f(z,y) = 0 in complete random normed spaces: an even
case.

Theorem 3.1. Let X be a linear space and let ¢ : X% — [0,00) be a function such
that there exists an L < 1 with

L
<

Jorallz,y € X. Let f : X — Y be an even mapping satisfying f(0) = 0 and
(2.1). Then Q(x) := limp_oo 16" f (%) exists for each € X and defines a quartic
mapping Q : X —» Y such that
(16 — 16L)¢
3.1 - t)y >
(3:1) Hi@-Qe) (6) 2 (16 — 16L)t + Ly(0, z)
forallz € X and allt > 0.

Proof. Letting z = 0 in (2.1), we get

t
- t) > e
H(2y)-16f(y) (£) 2 t+ 0(0,7)
forallye€ X and all t > 0.
Replacing y by z in the above formula, we get
t
3.2 2)-16f(z) (t) > —————
(3.2) f‘f(2)16f()()_t+(p(0}x)
forallz € X and all ¢t > 0.
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Let (S, d) be the generalized metric space defined by in the proof of Theorem 2.1.
Now we consider the linear mapping J : § — § such that

Jf(2z) == 16f(x)

forallz € X.
Let f,h € S be given such that d(f,h) = e. Then

t
S
ﬂf(m)—h(x)(et) =i+ 50(0,.7))

for all z € X and all ¢ > 0. Hence

1 f(20) - Jh(2z) (LEL) = P1gf(x)-16n(z) (LEL)

L
= K@) -he) | 768

for all z € X and all ¢ > 0. So d(f, h) = ¢ implies that d(Jf, Jh) < Le. This means
that

d(Jf,Jh) < Ld(f,h)
forall f,he S.
It follows from (3.2) that
L t
Hi@-161) \ 16°) 2 T3 (0,
for all z € X and all t > 0. So d(f,Jf) < &.
By Theorem 1.5, there exists a mapping @ : X — Y satisfying the following:

(1) Q is a fixed point of J, i.e.,
(33) Q(22) = 16Q()

forallz € X. Since g : X — Y is even, ¢ : X — Y is an even mapping.
The mapping Q is a unique fixed point of J in the set

M={fe€S:d(f h) <}
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This implies that @ is a unique mapping satisfying (3.3) such that there
exists a v € (0, 00) satisfying
t
s (x)-Q(z) (VE) 2 Tt o0,2)
for all z € X and all ¢ > 0;
(2) d(J™f,Q) — 0 as n — oo. This implies the equality
lim 16" f (2%) = Q(z)

n—o0

for all z € X;
3) d(f,Q) < ﬁd( f,Jf), which implies the inequality
L
< —
Q< T35z
This implies that the inequality (3.1) holds.

The rest of the proof is similar to the proof of Theorem 2.1. |

Corollary 3.2. Let X be a normed vector space with norm || -|| and let § > 0 and p
be a real number with p > 4. Let f : X — Y be an even mapping satisfying f(0) =0
and (8.1). Then Q(z) := limp_0o 16" f (&) ezists for each x € X and defines a
quartic mapping Q : X — Y such that

(2P — 16)¢
P — 16)t + 26||z||P

Bf(2)-Qz) (t) = e
forallz € X and all t > 0.
Proof. The proof follows from Theorem 3.1 by taking

o(z,y) = 6(ll|” + llyll*)
for all z,y € X. Then we can choose L = 24P and we get the desired result. O

Theorem 3.3. Let X be a linear space and let ¢ : X2 — [0,00) be a function such
that there exists an L < 1 with
Ty
< g 4
¢o(z,y) < 16Lp (2, 2)
forallz,ye X. Let f: X — Y be an even mapping satisfying f(0) = 0 and (2.1).
Then

. 1 n
Qe) = lim == f(2"x)
exists for each x € X and defines a quartic mapping Q : X — Y such that
(16 — 16L)t
— 16L)t + (0, z)

(3.4) K- (1) 2 7
forallz € X and all t > 0.
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Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
2.1.

Consider the linear mapping J : § — § such that

1
Jf@) =16 f (22)
forallz € X.
Let f,h € S be given such that d(f,h) = e. Then

t
H>—
K (z)—h(z)(€) = O

for all z € X and all t > 0. Hence

i f(z)-In)(LEL) = B oz Lp(ar) (LeD)
= kf(2z)-h(2c) (16LeL)

16L¢
>
= 16Lt + ¢ (0,2z)
16Lt
>

16Lt + 16Ly(0, z)
t

t+ ¢(0,z)

for all z € X and all t > 0. So d(f, h) = € implies that d(J f, Jh) < Le. This means
that

d(Jf,Jh) < Ld(f,h)

forall g,h € S.
It follows from (3.2) that

1 t
Hs(a)- 35 2z (Tst> 2 7 o0,

for all z € X and all t > 0. So d(g,Jg) < 15
By Theorem 1.5, there exists a mapping Q : X — Y satisfying the following:
(1) Q is a fixed point of J, i.e.,

Q (2x) = 16Q(x)

forallz € X. Since g: X — Y is even, Q : X — Y is an even mapping. The
mapping () is a unique fixed point of J in the set

M= {f€8:d(f h) <o}
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This implies that @ is a unique mapping satisfying (3.3) such that there exists a
v € (0,00) satisfying

t
>
Bi@)-q@) (V) 2 t+ (0, 2)
forallz € X and all ¢t > 0;
(2) d(J™f,Q) — 0 as n — oo. This implies the equality
1 non
Aim - f(2"2) = Q(z)

for all z € X
(3) d(f,Q) < ﬁd(f, Jf), which implies the inequality

1
d(f,Q) < 16 -16L"

This implies that the inequality (6.10) holds.
The rest of the proof is similar to the proof of Theorem 2.1. (1

Corollary 3.4. Let X be a normed vector space with norm || - || and let 6 > 0 and
let p be a real number with 0 < p < 4. Let f: X — Y be an even mapping satisfying
f(0) =0 and (2.5). Then Q(z) := lim, 00 u%f(znm) exists for each x € X and
defines a quartic mapping Q : X — 'Y such that
16 — 2P)t
i(@)-Qa) () 2 (16_(2?,)t +§9”$”,,
forallz € X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

¢(z,y) = 0(ll=l” + llylIP)

for all z,y € X. Then we can choose L = 2P~ and we get the desired result. O
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