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ON THE SEMILOCAL CONVERGENCE OF THE
GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS

ToANNIS K. ARGYROS? AND SAID HiLouT?

ABSTRACT. We provide a new semilocal convergence analysis of the Gauss—Newton
method (GNM) for solving nonlinear equation in the Euclidean space. Using our
new idea of recurrent functions, and a combination of center-Lipschitz, Lipschitz
conditions, we provide under the same or weaker hypotheses than before [7]-[13], a
tighter convergence analysis. The results can be extented in case outer or generalized
inverses are used. Numerical examples are also provided to show that our results
apply, where others fail [7]-[13].

1. INTRODUCTION

In this study, we are concerned with the problem of finding z* € R*, minimizing
the objective function:

(1.1) G@) =5 | F@) IP= 5 F@) F)

where || . || denotes the Euclidean norm, and F is a Fréchet-differentiable function,
defined on a convex subset D of R?, with value in R/ (4 < j). Many problems in
applied mathematics, and also in engineering are solved by finding such solutions z*
[1]-[14).

Except in special cases, the most commonly used solution methods are iterative,
when starting from one or several initial approximations a sequence is constructed
that converges to the solution of the equation. Iteration methods are also used for
solving optimization problems like (1.1).

Iteration sequences converge to an optimal solution of the problem at hand. In
particular, here for 2* to be a local minimum it is necessary to be a zero of the
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gradien VG of G, too:

(1.2) VG(e*) = I (a*) F(z*) =0,
with
(1.3) J(@)=F'(z) (zeD).

The iterative method for computing such zero is so—called Gauss—-Newton method
(GNM), as introduced by Ben-Israel [7):

(1.4) Tnt1 = Tn — T H(zn) Fza) (n>0), (z0€D),

where, J*t denotes the well known Moore-Penrose-pseudoinverse of J [5] (see
also Definition 2.1). There is an extensive literature on convergence results for
the (GNM). We refer the reader to [1]-[14], and the reference there. In particu-
lar, Haugler [11] provided a Kantorovich-type semilocal convergence analysis for
(GNM).

Using the center-Lipschitz conditions (instead of Lipschitz conditions used in
[11]) to find more precise upper bounds on the inverses of the mappings involved,
and our new idea of recurrent functions, we provide a analysis for (NGM) with the
following advantages (under the same or weaker computational cost and hypotheses):

(a) finer estimates on the distances || Tn41 — zn ||, || Zn — =* ||, (n > 0);
(b) an at least as precise information on the distances involved.

Numerical examples are provided to show that our results apply, where the cor-

responding ones in [7]-[13] do not.

2. SEMILOCAL CONVERGENCE ANALYSIS OF (GNM)

We need the following definition:

Definition 2.1. M™ is the Moore-Penrose-pseudoinverse of matriz M if the fol-
lowing four axzioms hold:

MY M)T = MT M,

(M MHT = M M,

MT M M = M,
and

M MY M= M.
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In the case of a full rank (m,n) matriz M, with rank rank M = n, the pseudo-
muerse 1S given by:

M = (MT M)™E MT
We need also the following result on majorizing sequences for (GNM).

Lemma 2.2. Let 8> 0, v > 0, v > 0, with v < v, and 7 € [0,1) be given.

Let
YB+27
2.1 by = —————,
21) T 1-%p
(2.2) g YH VY +8m0
4 70 ’
(2.3) ﬂ*:min{a(77+l)*n“a2 2(a—n) }
Yo "y + 207
Assume that the following hold:
(2.4) n<a and (<%

Then, scalar sequence {t,} (n > 0) generated by

Y (tng1 —ta) +2 1

2.5 to=0, t; =0, taye =t tny1 — ¢
(2.5) 0 1=0, tarz =tnp1 + 2 (1= tors) (tn+1 — tn)
i increasing, bounded from above by
(2.6) pr =1
11—«
and
converges to its unigue least upper bound t* such that
(2.7) t* € [0, t*].
Moreover, the following estimates hold for all n > 0:
(28) 0<tpi2—tan1 < (tn+1 - tn) < amtt /31
and
n
(2.9) oy, <22

—

—
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Proof. We note that 8* > 0 by the choice of 7, and (2.4). Moreover, we have also
do < 2a by (2.4). We shall show using induction on the integer m:
Y (tm+1 - tm) +27

i —tn) < a(t —tm),
2(1__70 tm+1) (m+] m)_ (m+1 m)

(210) 0 <tmpz —tme1 =

and

(2.11) Yo tme1 < 1.
If (2.10), and (2.11) hold, then we have (2.8) holds, and

tmy2 < thpta (tm+l - tm)
< tp+ta (tm - tm—-l) +a (tm+l - tm)
(2.12) < n+afB+--+am™l g

1— am+2

n _ phk
—— < ==t (by (2.6)).

Estimates (2.10) and (2.11) hold for m = 0, by the initial conditions, (2.4), and
the choices of o, and &p:
y(i—t)+2n _yB+27 _
I-vt -y 8
Yothi=vpf<Ll
Let us assume (2.8), (2.10), and (2.11) hold for all m < n + 1.
Estimate (2.10) can be re-written as:

Y (tmt1 —tm) +20+ 7% 0 tmy1 ~ 22 <0,

or
1-— am+l
(2.13) 'yamﬁ+2'yoa—1—-——,3+2n—2a50.
-«
Estimate (2.13) motivates us to introduce functions f,, on [0,+00) (m > 1) for
s = a by:

(2.14) fm(s) = Y™ B+2vs(1l+s+s2+---+5m)B~-25+27.
Estimate (2.13) certainly holds, if:
(2.15) fm(a) <0 forall m>1.

We need to find a relationship between two consecutive polynomials f,,:

(2.16)
Sm41(8) = Y™ B+29s(Q+s+82+- - +sm+s5m) 3254279
= ys"B—ys™ B+ p+
2% s(l+s+824-+s™)P+27s™23-25+27
= fm(s) +g(s) B s™,
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where,

(2.17) gs) =210 s +ys—7

Note that function g has a unique positive root « given by (2.2).
In view of (2.16), and (2.17), we have

(2.18) fnl@ = file)  (m21),
Moreover, define

(2.19) foo(@) = 1m_fm(e), s€[0,1), (m>1).
Then, we have by (2.18) that

(2.20) fool@) = fm(a) ~ (m 21).

In view of (2.20), we can show, instead of (2.15), since,

foola) =2 <70ﬁa +77—a)

11—«

that
fool@) <0,
which is true by (2.4). That completes the induction.

Estimate (2.9) follows from (2.8) by using standard majorization techniques [5],
[13]. Finally, sequence {t,} is non~decreasing, bounded from above by t**, and as
such it converges to its unique least upper bound t*.

That completes the proof of Lemma 2.2. 0

We need the following standard perturbation lemma [5], [11], [14].
Lemma 2.3. Let A and B be (m x n) matrices. Assume:
(2.21) rank (A) <rank(B)=r<i (r>1),
and
(2.22) |A-B || B* <1
Then, the following hold:
(2.23) rank (A) =,
and

(2.24) [ p—

B+l A-BI

We can show the semilocal convergence result for (GNM):
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Theorem 2.4. Let F € C}(Dy), Dy C D C R, and Dy be a convez set.

Assume:

there exist xg € Dy, and constants 3 >0, fo >0 K >0, Kg >0, andn : Dy —
R*, such that for all z,y € Dy:

(2.25) rank (J(zo))=r<i r2>1,
(2.26) rank (J(z)) <,
(2.27) I 7* (o) Fzo) 1< B,
(2.28) 1 T@)-TW <K lz-yl,
(2.20) | (@)~ T (o) 1< Ko I~ 3o,
(2.30) l T*(z0) 1< Bo,
(2.31) | T* () r(@) I<n(z) lz-yl,
with
(2.32) r(z) = (I - J(z) T*(a)) F(z),
(2.33) n(z) <n<1,
(2.34) U(=o,t*) € Dy,
where, t* is given in (2.7),
and
hypotheses of Lemma 2.2 hold, for
(2.35) Yo = ﬁo Ko, and Y= [30 K.
Then, the following hold:
(2.36) rank (J(z))=r  x € Ul(xg,t*);

Sequence {xn} (n > 0) generated by (GNM) is well defined, remains in U(zg, t*)
for all n >0, and converges to a zero z* of J*(z) F(x) in U(xo, t*);

(2.37) | Zn+1 = Zn |€ thyr — tn,

and

(2.38) | 2n~2* 1< ¢ = tn,
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where, sequence {t,} is given in Lemma 2.2.
Moreover, the following eguality holds

(2.39) rank (J(z*)) =,
and, if rank (J (z9)) = 1, and F(z*) = 0, then, z* is unique in U(zq, t**), and also
x* is the unique zero of J*(x) F(x) in U(xg,t*) too.

Proof. By hypothesis z; € U(xg, t*), since || ;1 — o ||< B < t*. Then, (2.37) holds
for n = 0.

Assume z,, € U(zo,t*), and (2.37) holds for m < n.

Using (2.29), and (2.11), we get:

[ T(@m) = T(2) | < Ko [|Zm -0

1
(2.40) < Ko (tm —to) = Ko tm < —.
Bo
It follows from (2.40), Lemma 2.3, that (2.36), (2.39), and
B
(2.41) | TH@m) | < % <t

1-6o Ko || zm—axo |l ~ 1= tm
hold.

Using (1.4), (2.5), (2.28), (2.31)-(2.35), (2.41), and the induction hypotheses, we
obtain in turn:
(2.42)

1
| it = 2 || = | T+ (@m) /0 (T (@t + 6 (@ — Tmt)) = T (@m1))
(@m ~ Tm-1)d0 + T (@) (T ~ T (@m-1)T *(@m-1)) F (@m-1)l|

L (L N em—zmaa [ 1) [ 2~z
> 1‘70tm 2'7 m m—1 n ™ m—1

< m (v (bm = tm—-1) + 1) (tm ~ tm=1) = tms1 — tm,

which completes the induction for (2.37).
Note also that (2.37), implies:

| zk41 —zo < thyr for k=1,--- ,m+1

That is Z+1 € U(zo, t*).
In view of Lemma 2.2, sequence {x,} is Cauchy in R?, and as such it converges
to some z* € U(zo,t*) (since U(xo,t*) is a closed set).
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We claim: z* is a zero of J*(z) F(z). Indeed, we get:

(2.43)
1 T*(=*) Flam) | < || TH(2*) (T~ T(@m) TH(zm)) Flam) || +
I T*(@*) | 1| T(zm) T (m) F(zm) |
< llzm—2 |+ 1 T @) T@m) | | 2mt1 —2m || -

By using (2.43), and the continuilty of mapping J (x), F(z), we justify the claim.

Finally, estimate (2.38) follows from (2.37) by using standard majorization tech-
niques [5], [13].

The uniqueness part as identical to Lemma 2.9 in [11, p. 122] is omitted.

That completes the proof of Theorem 2.4. O

We can now state Hiugler’s result for comparison purposes:
p

Theorem 2.5 ([11)). Under hypotheses (2.25)-(2.33) (excluding (2.29)), further
assume:

(244) hi=f7<5 (1)
and

(2.45) U(zo,v*) C Dy,
where,

(2.46) vt = nli_r)noo Un,

Y (Vnt1 —vn) +27
2 (1~7 vn41)
Then, the conclusions of Theorem 2.4 hold, with v*, {v,} replacing t*, {t,} (n >
0), respectively.

(2.47) v0 =0, v1 =0, Vpntg = Upt1 + (Vn41 — vn).

Remark 2.6. Note that in general

(2.48) Yo <Y

holds in general, and Y can be arbitrarily large [3]-[5].
Yo

Using induction on integer, we can easily show:

Proposition 2.7. Under only hypotheses of Theorem 2.5, or Theorems 2.4 and 2.5,
the following hold for all n > 0:

(2-49) ” Tn+l — Tn ”S byl —tn < Ung1 — Up,
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(2.50) th<vp, (n>2),
and
(2.51) | Zp —a* |<t* —tn < V" — vp.

Note also that if yvo < vy, then, strict inequality holds in (2.49), and (2.50) for
n> 2.

Remark 2.8. By Proposition 2.7, the error estimates of Theorem 2.4 can certainly
be improved under the same computational cost, since in practice, the computation
of 7 requires that of .

In the next section, we shall show:

(2) conditions of Lemma 2.2 are always weaker than {2.44), when 7 < v, and
i = j (i.e., when J(z) = F'(z)"! (z € Dy), in the case of Newton’s method),
where as they coincide, when vy = 7;

(b) conditions of Lemma 2.2 can be weaker than (2.44), when vy < 7.

3. SPECIAL CASES AND APPLICATIONS

Application 3.1. (Newton’s method). That isn=0.
Hypothesis (see {10])

(3.1) ho=py<I210

reduces to the famous for its simplicity and clarity Newton—Kantorovich hypothesis
[4], (13] for solving nonlinear equations:

1
(3.2) hg=7vp0< 2
Note that in this case, polynomials fm (m > 1) should be:
(3.3) fm(S)=(78"‘"14-2“/0(1+5+82+"'+8m))5—2,
and
(34) fra1(s) = fm(s) + g(s) s 8.
It is then simple algebra to show that condition of Lemma 2.2 reduces to:
1
(35) hA=a5§ Ea
where,
1
(3.6) azg(’y+4’yo+\/'y2+8’yg’y).
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In view of (3.2), (3.5), and (8.6), we get:

(3.7) hi < % — ha<

but not necessarily vice verca unless if v = 7p.

3

N | =

Moreover, if y9 < 7y, Condition (3.5) is also weaker than

1
(3.8) hasL = 70;_7 g < 1

provided in [12] for nonsingular operators. Note that condition (3.8) was first given

by us in [2], [4] for the case when linear operator F'(xo) is invertible.
We provide examples, where vy < v, or (3.5) holds but (3.2) is violated.

Example 3.2. Let X = Y = R?, equipped with the max-norm, and

1
r=(LF, Gh={z:z-soll<1-p), pe o)
Define function F' on Uy by

(3.9) Flz)=(&-p&-p), z=(&,&)7

The Fréchet—derivative of operator F' is given by

2
ro= ' g ]

Case 1: n =0.
Using hypotheses of Theorem 2.4, we get:
1
B=3(1-p) Y=3-p and y=2(2-p)

The Kantorovich condition (3.2) is violated, since

4 1
3 (1-p)(2-p)>1 foral pe [0,5)
Hence, there is no guarantee that Newton’s method converges to z* =
(¥/p, ¥/p)T, starting at .
1
However, our condition (3.5) is true for all p € I = |.450339002, 5)

Hence, the conclusions of our Theorem 2.4 can apply to solve equation (3.9
forallpeI.
Case 2: 0 # 7= 0.01.

Choose p = .49, then we get

Yo =251<y=302  B=.7,
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g = .033058514 < o = .53112045,

and
dp = 3347085 < 2 a.
Note also that condition (3.1) is violated no matter how 7 is chosen in (0, 1).

Finally, by comparing (3.5) with (2.44), we see that our condition is weaker
provided that

24
(310) a < W,

which can certainly happen.
For example, if y9 = 0, then a ~ 0, in which case (3.10) holds.

Application 3.3. In the case X = Y = R’ (j fixed in N), we can split matrix
F'(z,) into F'(z,) = B, — Cy, to obtain the inner-outer iteration:

(3.11) Tng1 =Tp — (HP 4.+ Hy+T) B! F(z,), (n>0),

(312) Hn = Bf,:l Cna

where, m,, is the number of inner iterations. Let us assume m, = m in iteration
(3.11). We can obtain result concerning the estimation of the number of inner
iterations under the conditions of Theorem 2.4:

Theorem 3.4. Under the hypotheses of Theorem 2.4, further assume:
I Bg F'(zo) < g,

ag R +mbh™ ! <y, sup || Hn IS h < 1,
n

where,
3-2n+284"
apg = 5 3
n
2-n1  q(g+1) [(1'??)2 1-7 ]
(3.13) n [1-(1-n) v g 2y ¥

the matriz norm has the property:
I F'(zo)™ RII<| F'(zo)™! S|
with R any submatriz of S;

Z’?(IO)t*) - Da

and
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hypotheses of Lemma 2.2 hold.
Then the conclusions of Theorem 2.4 hold true for inezact iteration (1.4).

Proof. Tt follows exactly as in Corollary 3.3 in [10], and our Theorem 3.7 in [6]. Here
are the changes (with +p replacing v in the proof):

I F'(20)™ F'@a) | < 1+ || 20 =30 |,
I Fz)™ Flao) | < 1-7 ||lwn —zo ||’
| F'@o)™ Flan) | < 3 llon—g0 2 + | 20— 20 || +8,
| F(20)™ (Ba=Bat) || < 7 [l &~ Za-t |
and
| B! F/(z0)7" |I< :

l—% |lzn -2l ¢
(W

The constant b defined in [10] (for v = ) is larger than b, which is an advantage
of our approach for the selection of a smaller 5, when v < 7.

Note that the hypotheses of Theorem 3.4 are simpler than the hypotheses of our
Theorem 3.7 in [6], and weaker than Corollary 3.3 in {10].

Hence, all the above justify the claims made.

Note that in the case i = j, the results can be provided in affine-invariant form
by simply replacing F(z) by F' (zo)™! F(z) for x € Dy, and setting Gp = 1. The
advantages of this approach have been explained in [5], [9].

Finally, our results immediately extend to the more general case of outer or
generalized inverses, by simply replacing perturbation Lemma 2.3 by its analog in
[8, Lemma 2.2, p. 238], (see also [1]-[5]), and using the same approach as in this
paper. Note that the crucial majorizing sequence (2.5) remains the same in this new
setting. We leave the details in the motivated reader.
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