임피던스 분광법을 이용한 염료감응 태양전지의 분석

유범진 • 이도권

1. 서론

오늘날까지 전 세계 에너지 수요의 대부분은 석유, 석탄 그리고 천 연 가스와 같은 화석연료의 연소에 의해 충족되어 왔다. 그러나 유한 한 매장량의 화석 연료는 급격히 고갈되고 그것들의 연소는 지구온난 화의 주범인 이산화탄소를 대기 중에 축적시키며 지구온난화를 가속하 여 기후변화 등의 심각한 문제를 야기하고 있는 실정이다. 이러한 문제 를 해결하기 위해서 우리는 이산화탄소의 발생을 억제해야 할 뿐만 아 니라, 태양, 풍력, 수력, 조력 및 지열에너지와 같은 재생에너지원의 시 급한 개발이 필요하다. 다행스럽게도 현재까지 알려진 재생 청정 에너 지원 중에서 태양 에너지는 차세대 에너지원으로 커다란 가능성을 보 여주고 있다. 특히, 염료감응 태양전지는 낮은 생산단가 뿐만 아니라 색 체가 풍부하고 투명한 특징을 갖는 재생 에너지원으로 지난 20년 동안 광범위하게 연구되어 왔고, 이러한 노력의 결과 11%보다 높은 광전 변 환 효율이 보고되고 있다^{.1-4} 이에 본 고에서는 염료감응 태양전지의 기 술 향상 및 고효율 전략을 위한 분석 방법의 일환으로써, 임피던스 분광 법을 이용한 분석에 대해 보다 자세히 소개하고 최근 분석동향 및 본 그룹에서 수행된 연구결과를 중심으로 기술하고자 한다.

2. 본론

2.1 염료감응 태양전지의 구조 및 작동 원리

일반적으로, 염료감응 태양전지는 투명전도성 기판(TCO, transparent conducting oxide) 위에 염료 분자가 화학적으로 흡착된 나노 입자 TiO2 필름으로 이루어진 전극(working electrode)과 투명전도 성 기판 위에 Pt 촉매 나노입자로 이루진 전극(counter electrode) 및 전해질로 구성되어 있다. 여기서 두 전극은 고분자, 용융 유리 등의 실 란트에 의해 밀봉되고 그 사이는 산화-환원 반응 종을 포함하는 전해 질로 채워진다. 이와 같은 염료감응 태양전지는 조사된 광을 흡수한 염료가 바닥상태(S, ground state)에서 들뜬상태(S^{*}, excited state)로 전이된 후, 들뜬 전자를 반도체 산화물의 전도띠(conduction band)로 주입하여 전류를 발생시킨다. 산화(S⁺, oxidation)된 염료는 상대전극의 촉매 반응에 의해 형성된 환원종 Г 이온에 의해 재생(regeneration)된

Impedance Analysis of Dye-Sensitized Solar Cells

다. 그림 1은 광전기화학형 태양전지로 분류되는 염료감응 태양전지 의 구조 및 작동 원리를 설명한다. 광전변환 원리를 단계별로 묘사하 면 다음과 같다.

- ·단계 1. 염료의 광흡수(light-absorption of dye) $S + hv \rightarrow S^*$
- 단계 2. 전하 주입(charge injection) $S^* \rightarrow S^+ + e^-$ (TiO₂)
- 단계 3. 전자 이동(transport of electrons) e⁻(TiO₂/TCO/lead wire/TCO/Pt)
- 단계 4. 촉매 반응(catalytic reaction)
- $I_3^- + 2e^-$ (Pt) $\rightarrow 3I^-$
- 단계 5. 재생(regeneration)
- $S^{+} + 3/2 I^{-} \rightarrow S + 1/2 I_{3}^{-}$
- 2.2 염료감응 태양전지와 임피던스 분석

2.2.1 복소 임피던스

전기화학은 산화-환원 반응에 의한 물질 간의 전자 이동과 그것들 에 의해 발생되는 여러 현상들을 취급하는 분야로서 화학에너지, 전기

현재

서울대학교 재료공학과(공학학사) 서울대학교 재료공학과(공학석사) 서울대학교 재료공학과(공학박사) Institute of Physical Chemistry 2009 Justus-Liebig-University Giessen, Senior Scientist 한국과학기술연구원(KIST) 태양전지센터 선임연구원

한국과학기술연구원 태양전지센터(Beomjin Yoo and Doh-Kwon Lee, Solar Cell Center, Energy Division, Korea Institute of Science and Technology (KIST), P. O. Box 131, Cheongryang, Seoul 130–650, Korea) e-mail: dklee@kist.re.kr

그림 1. 염료감응 태양전지 구조(왼쪽) 및 작동 원리(오른쪽).

그림 2. 전극/전해질 계면 모식도(위) 및 상응하는 등가회로(아래).

에너지 그리고 빛에너지 등의 상호변환을 다룬다. 또한 반응속도론 측면에서 전기화학 반응은 전자의 이동에 의해서 발생되기 때문에 전 자 이동 속도인 전류의 세기가 반응속도를 의미하게 되고, 이러한 이 유로 전류를 방해하는 정도의 척도인 저항(resistance)의 개념으로 전기화학 반응을 고려해 볼 수 있다. 그러나 실제 전극과 전해질 계면 에서 전기화학 반응이 일어날 때 전자는 저항 뿐 아니라 병렬로 연결 된 축전기(capacitor) 성질의 전기이중층(electrical double layer)을 동시에 통과하게 된다. 즉, 전기화학전지에 흐르는 전류는 i) 산화 또 는 환원 반응과 ii) 전기이중층의 충전을 통해 흐를 수 있다. 전자와 후 자를 각각 Faraday 전류와 충전 전류라고 한다. 이를 회로로 도시하 면 전류의 통로가 병렬로 연결된 것과 같다. **그림 2**는 전극/전해질 계 면에서 Helmholtz 평면(IHP: inner helmholtz plane, OHP: outer helmholtz plane)을 포함하는 이중층 구조 및 전자 전이에 대한 모식 도, 그리고 물질운반(warburg element)을 고려한 등가회로(equivalent circuit)를 보여준다.

이온이 전자를 주고 받아 산화 또는 환원이 일어날 때, 계면 저항(물

질간의 전자의 이동을 방해)과 축전기 용량(capacitance, 양이온의 환 원과 관계없이 이용되는 전자 흐름의 척도)을 동시에 측정하는 전기 화학 계는 단순한 저항이 아닌 복소 임피던스(complex impedance) 로 기술해야 한다.

임피던스를 통한 분석은 전기 및 전자공학 뿐만 아니라 전기화학 에서도 이미 오래 전부터 연구되어 왔고 최근 들어 전해질을 이용 하는 광전기화학형 염료감응 태양전지의 연구에도 빈번하게 응용되 고 있다. 전기회로에서 저항(resistor), 축전기(capacitor) 및 유전 기(inductor) 등의 성질 때문에 생기는 복합저항인 임피던스는 임의 의 직류 전위(또는 평형 전위)에 전위 섭동으로 만들어진 아주 작은 교류 전위를 더해서 전극에 인가한 뒤 얻어진 교류 전류를 해석함으 로써 얻어진다. 일반적으로 전기 회로에서 저항은 직류, 교류 회로에 상관없이 같은 위상을 유지하며 Ohm의 법칙을 따르는 반면, 전하가 모여 전기 에너지가 저장되는 축전기 및 유도된 역전류의 생성으로 전 류의 이동을 방해하는 유전기는 직류 또는 교류 회로에 따라 그 대응 신호가 다르므로 교류 회로에서 이들의 거동에 대한 이해가 필요하다. 단, 전기화학 계에서 유전기는 거의 없으므로 교류 회로에서 유전기 의 거동에 대해서는 언급하지 않을 것이다.

일반적으로, 주기적인 전압의 변화로 말미암아 시간에 따라 크기와 방향이 규칙적으로 바뀌는 교류 회로의 전원으로부터 발생한 교류 전 압은

$$v(t) = v_{max} \cdot e^{j\omega t} \tag{1}$$

으로 나타낼 수 있다. 여기서 ω는 각속도(angular velocity)이며 ω=2πf와 같은 식이 성립한다. f는 교류 신호의 주파수(frequency) 를 의미한다. 앞에서 언급했던 것과 같이 저항 성분은 직류, 교류 회 로에 상관없이 Ohm의 법칙을 따르므로 얻어진 교류 전류는 다음과 같다.

$$i(t) = v(t)/R = v_{max} \cdot e^{j\omega t}/R = v_{max}/R \cdot e^{j\omega t} = i_{max} \cdot e^{j\omega t}$$
(2)

여기서, *i_{max}는* 최고 전류값(amplitude)으로서 그 값은 *v_{max}*의 1/*R* 배이고, 이 식을 시간의 함수인 *v(t)*와 비교하였을 때 전류와 전압은 위

상(phase)이 같다는 것을 알 수 있다. 즉, 전압이 최상(*v_{max}*)일 때 전류 또한 최상(*i_{max}*)이라는 것을 의미하고, 궁극적으로는 저항 *R*이 주파수 *f*에 의존하지 않는다는 것을 암시한다(**그림 3**).

반면, 축전기가 전기 회로에 연결되었을 때는 다른 양상을 보여준다. 일반적으로 축전기는 전기가 흐르는 회로에서 전하를 모으는 장치로 전국인 두 도체 판 사이에 유전성 물질(dielectric material)을 넣은 구조이며, 두 전극 사이에 걸린 전압에 의해서 음전하와 양전하가 유 도되고 발생된 전기적 인력에 의해 전기에너지를 저장하게 된다. 그 렇기 때문에 축전기를 회로에 연결하게 되면 절연체인 유전성 물질에 의해 회로가 닫혀 전하가 축적되며, 이때 축적된 전하량은 다음과 같다.

$$Q(t) = C \cdot v(t) \tag{3}$$

여기서, 정전용량 C(capacitance)는 단위 전압 당 축전되는 전하량 이다. 한편, 교류 회로에 축전기를 연결한 경우에는 식 (1)의 전위가 대입되어야 하며, 축적된 전하량은 다음과 같다.

$$Q(t) = C \cdot v_{max} \cdot e^{j\omega t} \tag{4}$$

여기서, 전하량을 시간으로 미분하면 시간에 따른 전하량의 변화, 즉 축전기에 흐르는 전류가 된다.

$$i(t) = dQ(t)/dt = j \cdot C \cdot v_{max} \cdot \omega \cdot e^{j\omega t} = j \cdot i_{max} \cdot e^{j\omega t},$$

where $i_{max} = C \cdot v_{max} \cdot \omega$ (5)

이 식에서 확인할 수 있듯이, 전류는 전압과 π/2 radian (90°)의 위 상차(out of phase)를 갖는다. 이를 그래프로 나타내면 **그림 3**(아래) 와 같다. 교류 회로 내 축전기에서 용량성 리액턴스(capacitive reactance) X_C는 Ohm의 법칙과 마찬가지로 전류에 대한 전압의 비(전압/ 전류)로 정의하고, 직류 회로 속에서의 저항과 동일하게 전자의 흐름 을 방해하는 역할을 한다. Ohm의 법칙을 이용하면 용량성 리액턴스 X_C

그림 3. 교류 회로에 저항을 연결된 경우 (위)와 축전기를 연결한 경우(아래).

를 다음과 같이 나타낼 수 있다.

$$X_C = v(t)/i(t) = 1/(j \cdot \omega \cdot C)$$
(6)

교류 회로에서 축전기의 *X*는 저항의 역할을 할 뿐만 아니라 그 크 기는 주파수 *f*와 정전용량 *C*에 반비례하고 저항에 대해 -90°의 위 상각을 갖는다. 결과적으로 저항 *R*은 상 변화가 없고 주파수에 무관하 지만, 용량성 리액턴스 *X*_C는 -90°의 상 변화를 가지고 주파수에 의존 한다는 것을 알 수 있다.

전기화학전지의 전극/전해질 계면은 분극저항 *R*,와 전기이중층의 축전용량 *C*,의 병렬 회로로 취급할 수 있음을 앞서 언급하였다. 병렬 회 로는 임피던스의 역수인 어드미턴스(admittance, *Y=1/Z*)의 합으로 다루게 되므로 *R*,와 *C*,로 이루어진 병렬 회로의 어드미턴스는

$$Y_{RC} = \sum_{k} Y_{k} = (1/R_{p} + j\omega C_{d})$$
(6)

와 같다. 한편, *R*_p와 *C*_d의 병렬 회로와 직렬저항 *R*_s가 다시 직렬로 연결 된 회로(**그림 2**)의 임피던스는 다음과 같이 나타낼 수 있다.

$$Z = R_s + Y_{RC}^{-1} = R_s + (1/R_p + j \cdot \omega \cdot C_d)^{-1} = R_s + (R_p - j \omega R_p^{-2} C_d) / (1 + \omega^2 R_p^{-2} C_d^{-2}) = Z' + jZ''$$
(7)

이와 같이 주파수의 함수인 복소저항 *Z*(ω)는 실수항(*Z'*)과 허수 항(*Z''*)으로 이루어져 있다.

$$Z' = R_s + R_p / (1 + \omega^2 \cdot R_p^2 \cdot C_d^2)$$
(8a)

$$Z'' = (-\omega \cdot R_p^2 \cdot C_d) / (1 + \omega^2 \cdot R_p^2 \cdot C_d^2)$$
(8b)

2.2.2 염료감응 태양전지의 임피던스 특성 분석

전해질에 산화-환원 반응 종을 포함하는 광전기화학형 염료감응 태 양전지의 경우, **그림 4**와 같이 Fabregat-Santiago 등에 의해 제안된 일반적인 transmission line 모델로 나타낼 수 있다.⁵ 이는 태양전지에 높은 조도(high-illumination intensity)의 광이 조사되고 TiO₂ 광전극 (photoelectrode) 기관을 충분한 고온에서 소결하였을 때, TiO₂ 내에 서 전자 전달 저항(electron transport resistance) 요소가 무시된 단순 화된 모델이며 염료감응 태양전지의 일반적인 등가회로 모델과 유사한 형태를 보여 준다. 특히, 이 모델에서는 저항 *R*과 축전기적 성질인 constant phase element(CPE)가 병렬로 연결된 특징적인 네 개의 계면

그림 4. 염료감응 태양전지의 일반적인 transmission line 모델(단순회된 모델).⁵

이 보여 진다. 여기서, CPE는 평평하지 않고 다공성 (porous)인 전극을 가지는 축전기의 정전용량 *C* 값을 보정해 주기 위해 사용한다.

i) 상대전극/전해질(platinized counter electrode/electrolyte) 계면에서의 전하이동 저항(charge-transfer resistance) R_{pt} 과 정 전용량 C_{Pb}

 ii) FTO/TiO₂ 접촉 계면에서의 저항 R_{FTO/TO2}과 정전용량 C_{FTO/TO2},
 iii) FTO/전해질 계면(TiO₂가 코팅되지 않고 드러난 FTO에서 전해 질로의 전자 재결합이 일어나는 계면)에서의 전하이동 저항 R_{FTO/elect},
 과 정전용량 C_{FTO/elect},

iv) TiO₂/전해질 계면(TiO₂에 주입된 전자가 전해질의 I₃⁻로 재결합 이 일어나는 계면)에서의 전하 재결합 저항(charge recombination resistance) *R*_{TiO2/elect}.과 정전용량 *C*_{TiO2/elect}.

추가적으로, FTO 전도성 기관의 면저항(sheet resistance)에 주로 영향을 받는 *R*_s(series resistance)과 전해질 내 산화-환원 종의 확산 에 의한 와버그 임피던스(Warburg impedance) *Z*_a가 존재한다.

이와 같은 모델을 통해 확인할 수 있는 등가회로의 요소들은 각각의 인가된 주파수에 대해 실수항(Z')과 허수항(Z'')으로 이루어진 소위 나 이퀴스트 선도(Nyquist plot)라고 부르는 임피던스 복소평면으로 나 타낼 수 있다. 일반적으로, 염료감응 광전기화학 전지에서 임피던스 의 나이퀴스트 선도는 광 조사 상태(illumination condition)와 열린 회로 상태(open circuit condition)에서 측정이 되며, 그림 5와 같이 측정된 주파수 영역(10⁻²~10⁶ Hz)에서 특징적인 세 개의 반원이 나타난다. 초창기 나이퀴스트 선도에 대한 해석은 가장 높은 주파수 영역에서의 저항 요소 R,는 FTO의 면저항에 주로 기인하고, 나타난 세 개의 반원 은 높은 주파수 영역의 경우 상대전극/전해질 계면(Zi), 중간 주파수 영역의 경우 TiO₂/전해질 계면에서의 전하이동(Z₂), 그리고 낮은 주 파수 영역의 경우 전해질 내 이온종의 확산(Z3)에 관련된 임피던스 의 결과로 보았다.⁶⁷ 그림에서 R과 R, R:는 Z과 Z, Z:에 각각 상응 하는 실수항을 나타낸다. 이러한 해석은 지금까지도 신뢰를 받고 있으 며, 최근에 주장되고 있는 임피던스 해석과도 커다란 차이를 보이지 않 는다.

2005년 M. Grätzel 그룹에서 중간 주파수 영역의 응답(乙)이 TiO₂/ 전해질 계면에서의 전하 이동 뿐만 아니라, TiO₂ 필름 내에서 전자 전 달도 함께 연관되어 있다고 주장하였고⁸ 그 다음해에 Han 그룹은 FTO 의 면저항에 주로 기인하는 *R*s는 FTO/TiO₂의 접촉 저항도 함께 포함 한다고 보고하였다.⁹ 2005년에 Eguchi 그룹은 높은 주파수 영역 乙에 는 Pt 상대전극/전해질 계면의 전하이동 저항(charge transport resis-

그림 5. 염료감응 태양전지의 전형적인 임피던스의 나이퀴스트 선도.67

tance) 뿐 아니라 TCO/TiO₂에서의 계면 저항도 함께 기여한다고 주 장하였고, 다른 전도성 유리 기판을 응용한 염료감응 태양전지 연구를 통해 기판에 따른 TCO/TiO₂의 계면 저항(접착성) 변화와 R₁의 관계로 증명하였다.¹⁰ 특히, Eguchi 그룹은 나이퀴스트 선도에서 네 개의 특징 적인 주파수 구간으로 나뉘는 전기화학적 계면의 존재를 주장하였다. 즉, *Z*,과 *Z*₂ 사이에 추가로 존재하는 계면, TiO₂ 필름 내 입자들의 경계 (grain boundary)를 지나는 전자의 확산에 관련된 저항의 존재를 주장 하였고, TiO₂ 전극의 낮은 소결 온도에 따른 TiO₂ 필름 내의 전자 확산 저항 증가로 이 요소를 확인한 바 있다.^{10,11} 이 외에도 다양한 임피던스 연구결과와 해석들이 존재하나 현재까지 본 그룹에서 수행된 연구결과 들은 대체로 이상의 해석방법에 근거를 두고 있다.

그림 6은 TiO₂ 필름을 지지하기 위한 전도성 유리 기관으로 FTO와 ITO를 사용하였을 때의 *J*-*V* 곡선과 임피던스의 나이퀴스트 선도를 보 여 준다. 이 경우 TiO₂ 광전극의 고온 소결 과정으로 인해 열적으로 불 안정한 ITO 기관은 열적 안정성이 우수한 FTO 보다 면저항이 2~3배 증가하고, 나이퀴스트 선도에서 면저항에 의해 결정되는 *R_s* 값이 커지 는 것을 확인할 수 있다. 그리고 평평한 ITO 기판 위에 TiO₂ 필름보 다 울퉁불퉁한 표면형상을 갖는 FTO 위의 TiO₂ 필름이 더 물리적 접 착력이 좋고 따라서 접촉 계면 저항(*R*_{FTO/TO})이 감소하므로 FTO 기판 의 경우에서 보다 작은 *R_i* 값이 관찰된다. 결과적으로, *R_s*는 주로 TCO 면저항에 기인되고 면저항의 감소는 *J*-*V* 에서 FF(fill factor) 향상에 영향을 준다.

우리는 R₁을 보다 정확하게 이해하기 위해서 **그림 7**과 같은 두 가지 실험을 실시하였다. 먼저 상대전극/전해질 계면에서 Pt의 촉매 반응에 의한 전하이동 저항(*R_µ*) 요소를 나타내기 위해서, Pt의 열 환원(thermal reduction)에 사용되는 전구체 용매(H₂PtCl₆ · H₂O in 2-propanol)의 농도를 변화시켰고, 상대전극 위에 Pt loading 양을 다르게 하 였다. 그 결과 농도가 증가함에 따라 전하이동 저항이 감소하였고, 이는 *R*₁의 감소로 나타났다. 두 번째로 ITO/FTO 이중층 구조를 갖는 TCO 를 광전극의 전하 콜랙티(charge collector)로 응용한 염료감응 태양전 지에서, 박막의 치밀한 TiO₂ 층이 TCO/TiO₂ 계면에 미치는 영향에 대

그림 6. 서로 다른 전도성 유리 기판을 응용한 염료감응 태양전지의 *J-V* 곡선(위)과 임피던스 나이퀴스트 선도(아래).

그림 7. 염료감응 태양전지에서 상대전극 위에 Pt loading 양의 변화 (위) 와 ITO/FTO 전하 콜렉터에 TiO₂ 박막의 존재에 따른 나이퀴스트 선도의 변 화(아래).¹²

그림 8. 염료감응 태양전지에서 입사광의 강도에 따른 나이퀴스트 선도.

한 임피던스의 나이퀴스트 선도를 분석하였다.¹² 마찬가지로 치밀한 박 막 TiO₂는 TCO/TiO₂ 계면의 접촉 저항(*R*_{TO/TO2})을 감소시켰고, 이는 *R*₁의 감소를 초래했다. 결과적으로 *Z*₁에 상응하는 *R*₁은 상대전극/전해 질 계면의 전하이동 저항과 TCO/TiO₂ 계면의 접촉 저항이 함께 관여 한다는 사실이 확인되었다.

그림 8은 입사광의 광도에 따른 나이퀴스트 선도의 변화에 대한 내 용으로, 입사광의 광량을 1.0 sun(1,000 W/m²)에서 0.5 sun(500 W/m²) 낮출 경우, 큰 폭의 № 증가가 보여 진다. 이는 입사광량에 비 례해서 발생된 전자들이 반도체 산화물 전도띠로 주입되기 때문이다. R_2 는 TiO₂에 주입된 전자가 전해질의 I₃⁻로 재결합이 일어나는 계면, 즉 TiO₂/전해질 계면에서의 전하 재결합 저항($R_{TIO/elect}$)으로서, 주입 된 전자의 수가 적을수록 재결합 저항은 증가한다. 이는 반대로 반도체 산화물의 전도띠로 주입된 전자의 양이 증가할수록 재결합이 속도가 상 승하고 저항 R_2 가 감소한다는 것을 의미한다.

마지막으로 **그림 9**는 전도성 질화물 TiN을 입사광의 반대 방향, 즉 TiO₂ 반도체 산화물 위에, 광전극의 전하 수집층으로 응용하기 위해서 형성시킨 후면전극(back contact electrode) 구조의 염료감응 태양전

그림 9. 후면전극 염료감응 태양전지에서 TiN 층의 기공 감소에 따른 전해 질의 확산 저해와 나이퀴스트 선도.¹³

지에 관한 내용이다.¹³ FTO 대신에 사용된 전도성 TiN은 TiO₂ 산화물 과 Pt 상대전극 사이에 위치하기 때문에 전해질의 원활한 이동을 위한 기공(pore)이 유지되어야 하며, 동시에 전하 콜렉터로서 충분한 전도 성도 갖추어야 한다. 그러나 TiN을 중착할 때, 충분한 전도성을 위해 두 껍게 증착하게 되면 기공이 작아지면서 전해질의 원활한 이동이 저해된 다. 그러므로 나이퀴스트 선도 분석을 통해 전해질의 원활한 이동과 충 분한 전도성을 갖는 최적의 중착 조건을 찾는 것이 중요하다. 결과적으 로 전도성 질화물 TiN이 109 nm에서 167 nm로 증가할수록 기공이 감소하고 R₃가 증가한다. 이는 전해질 내 산화-환원 종의 확산저항 (R_d)이 증가함을 나타내고, Z₃은 낮은 주파수 영역에서 전해질 내 이온 종의 확산에 관련된 와버그 임피던스(Z_d)와 관련이 있음을 의미한다.

최근 연구 동향 및 앞에서 언급된 연구 수행결과를 분석하면 다음과 같이 정리할 수 있다. 일반적인 임피던스의 나이퀴스트 선도에서 *R*,는 주로 TCO 면저항에 기인되고, *Z*,에 상응하는 *R*,은 상대전극/전해질 계 면의 전하이동 저항과 TCO/TiO₂ 계면의 접촉 저항이 함께 관여하며, *Z*,에 상응하는 *R*,는 TiO₂/전해질 계면에서의 전하 재결합 저항을 의미 한다. 그리고 *Z*,에 상응하는 *R*₃는 전해질 내 이온종의 확산에 관련된 저 항을 나타낸다. 더불어 *Z*,과 *Z*,사이의 특정 주파수 구간에 존재하는 TiO₂ 필름 내 전자 확산에 관련된 저항은 보통 높은 조도의 광 조사 또는 TiO₂ 기판의 고온소결 조건에서는 나타나지 않는 것이 특징이다. 다시 말하 면, 광량이 증가함에 따라 TiO₂ 내로 주입되는 전자의 양도 증가하고 TiO₂ 입자들의 경계 저항이 감소하며 결과적으로 TiO₂ 필름 내 전자 확 산 저항은 무시되어 나타나지 않거나, 고온소결을 하게 되면 TiO₂ 입자 들 사이에 necking이 잘 이루어지므로 TiO₂ 필름 내 전자 확산 저항은 경계 저항의 감소로 인해 무시되어 나타나지 않는 것을 의미한다.

3. 결론

염료감응 태양전지는 태양빛을 전기에너지로 전환하는 신재생 에너 지원으로, 실리콘을 사용하는 기존의 태양전지에 비해 가격이 저렴하 고 다양한 색상 구현이 가능하며 투명한 특징을 갖는 소자로 활발하 게 연구되어 왔다. 하지만 염료감응 태양전지의 상용화가 이루어지려 면, 여전히 고효율을 달성할 수 있도록 활발한 기술개발이 필요하다. 이 러한 염료감응 태양전지의 고효율 달성을 위해, 복합저항인 임피던스 분광법은 중요한 분석방법 중 하나로 주목받고 있으며, 최근 들어 산 화-환원 반응 종을 포함하는 광전기화학 특성 분석에 적합함이 인정 되어 더욱 더 활발히 응용되고 있다. 전류의 통로에 방해가 되는 저항 과 축전기, 유전기의 성질로 생기는 복합저항(임피던스)의 이해는 빛 에너지를 전기에너지로 전환하는 발전소자(태양전지)의 에너지 변화 효율 향상에 중요한 역할을 할 것으로 기대된다.

참고문헌

- Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, *Jpn. J. Appl. Phys. Part* 2, 45, L638 (2006).
- M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, *J. Am. Chem. Soc.*, **127**, 16835 (2005).
- F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry–Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, *J. Am. Chem. Soc.*, 130, 10720 (2008).
- N.-G. Park and K. Kim, Phys. Stat. Sol. (a), 205, 1895 (2008).

- F. Fabregat–Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel, *J. Phys. Chem. C*, 111, 6550 (2007).
- L. Han, N. Koide, Y. Chiba, and T. Mitate, *Appl. Phys. Lett.*, 84, 2433 (2004).
- L. Han, N. Koide, Y. Chiba, A. Islam, and T. Mitate, C. R. Chimie., 9, 645 (2006).
- Q. Wang, J.-E. Moser, and M. Grätzel, J. Phys. Chem. B, 109, 14945 (2005).
- 9. N. Koide, A. Islam, Y. Chiba, and L. Han, J. Photochem. Photobio. A: Chem., 182, 296 (2006).
- T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, J. Electrochem. Soc., 152, E68 (2005).
- T. Hoshikawa, T. Ikebe, R. Kikuchi, and K. Eguchi, *Electrochim. Acta*, **51**, 5286 (2006).
- B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, *J. Mater. Chem.*, **20**, 4392 (2010).
- 13. B. Yoo, K.-J. Kim, Y. H. Kim, K. Kim, M. J. Ko, W. M. Kim, and N.-G. Park, *J. Mater. Chem.*, in press.