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Abstract. The optimal replacement problem was investigated for a multi-state 
deteriorated system for which the true internal state cannot be observed directly 
except when the system breaks down completely. The internal state was assumed to 
be monitored incompletely by a monitor that gives information related to the true 
state of the system. The problem was formulated as a partially observable Markov 
decision process. The optimal procedure was found to be a monotone procedure with 
respect to stochastic increasing ordering of the state probability vectors under some 
assumptions. Limiting the optimal procedure to a monotone procedure would greatly 
reduce the tremendous amount of calculation time required to find the optimal 
procedure. 
 
 
Key Words: Condition monitoring maintenance, monotone procedure, partially 
observable Markov decision process, stochastic increasing, totally positive of order 2 

 
 

1. INTRODUCTION 
 
1.1 Background and previous research 
 

Since the breakdowns that occur in huge, complex systems can have a great impact 
on society, it is necessary to improve the reliability of such systems. However, it is 
sometimes difficult to make improvements at the system design stage for technological 
reasons. Condition monitoring maintenance, which can prevent breakdowns in advance, 
plays an important role in the field of reliability. Derman (1963) investigated an optimal 
replacement problem for a multi-state deteriorated system with complete observation. For 
the incomplete monitoring case, the optimal maintenance problem is usually formulated as 
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a partially observable Markov decision process (POMDP). This approach has many 
applications and has attracted the attention of many researchers. Monahan (1982) provided 
an excellent survey on the theory, models, and algorithms of POMDP. Smallwood and 
Sondik (1973) showed that the optimal expected cost for the finite horizon becomes a 
piecewise-linear and convex function of the state probability vector and formulated an 
algorithm to calculate the optimal procedure and expected cost. Ivy and Pollock (2005) 
developed the concept of “marginally monotonic”, which requires component-wise partial 
ordering, and proved that the optimal procedure has a marginally monotonic structure 
when the transition probability of the system follows a geometric distribution and the 
conditional probability of the monitor follows a binomial distribution. Ohnishi, Kawai, 
and Mine (1986) investigated a system monitored incompletely and derived a sufficient 
condition for the optimality of a monotone procedure. Maehara and Suzuki (2005) 
considered the optimal maintenance policy for an incomplete monitoring system with 
uncertain repair after inspection. 

In the previous work of Ohnishi et al. (1986) and Maehara et al. (2005), the optimal 
maintenance problem was investigated on the basis of totally positive of order 2 (TP ) 
ordering of the prior state probability vectors. This research deals with the optimal 
maintenance problem on the basis of stochastic increasing (SI) ordering of the state 
probability vectors. 

 
1.2 Model description 
 
In this research, the true internal state cannot be observed directly except when the system 
breaks down completely. This means the true internal state can be known exactly only 
when the system is down completely. Let X  denote the system’s internal state at time t; 
its value comes from a finite set {0, 1, ···, i, ···, N} in which the numbers are ordered to 
reflect the degree of system deterioration. State 0 denotes the best state, i.e., the system is 
like new, and state N denotes the most deteriorated state. Let Π= (π , π , ···, πN) be the 
prior state probability vector of X, where = Pr(X = i), ∑ π 1N , and 0 ≤ π ≤ 1 for 
any i. 

The state deteriorates in accordance with a stationary discrete-time Markov chain 
having a known transition law. Let P be the transition probability matrix; element P  
denotes the one-step probability of transition from state I to state j. At each time period, 
the state is monitored incompletely by a monitor that gives information related to the true 
state of the system. M  is the outcome of the monitor at time t; it comes from a finite 
set{0, 1, ···, θ, ···, M}. LetΓ= {γ = Pr(M  = θ|X = j)} be a conditional probability matrix 
that describes the relationships between the system’s true states and the monitor’s output: 

γN
0  θ 0, , M 1
1                   θ M  

Two actions, “Keep” and “Replace,” are considered. “Keep” means an action that 
continues the system’s operation with incomplete monitoring, and the operating cost per 
period in state I is given by C . “Replace” means an action to replace the system with a 
new one, and replacement cost R (>0) is assumed to be constant. At any given time period, 
only one action can be selected as the optimal one. 
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This model can be used to describe the preventive maintenance of many systems. In 
the case of an aircraft, the true state (X ) of an engine is unobservable except when it 
breaks down completely. The engine’s degradation can be described by transition 
probability matrix P. The spectrometric oil analysis program (SOAP) is an effective way 
to predict engine degradation and to detect engine problems early. Oil samples are taken 
from the aircraft engine and analyzed using spectrometric tools to determine the 
concentration of sub micrometer particles of worn metal suspended in the oil. The results 
of SOAP (Mt) provide information related to the engine’s true state (X ). The relationship 
between M  and X  can be described by conditional probability matrix Γ. 

 
 

2. DEFINITIONS AND ASSUMPTIONS 
 
2.1 Partial ordering 
 
Stochastic Increasing (SI) (Marshall and Olkin, 1979) 
 

 For vectors X = (x , x , ···, x ) and y = (y , y , ···, y ), if 
∑ x ∑ y  for any 1    ,  

 x is stochastically smaller (or smaller in distribution) than y, denoted by x s y. 
 

 For (n × m) matrix Γ, if 
∑ γ ∑ γ for any 1      and 1    ,  

      Γ has an SI property, denoted by Γ∈SI. 
 
Totally Positive of order 2 ( ) (Karlin, 1968) 
 

 For vectors x = (x , x , · · · , x ) and y = (y , y , · · · , y ), if 
     for any 1      ,  

x is said to be smaller than y in the monotone likelihood ratio order, denoted by 
x  LR y. 
 

 If (n × m) matrix Γ satisfies 
γ γ
γ γ 0  for any 1 ≤ i<i′<n, and 1 ≤ j <j′ ≤ m, 

we say that Γ has a property of TP , denoted by Γ∈TP . 
 
Clearly, the monotone likelihood ratio is a special case of TP . In the following, x  T y is 
used instead of x  LR y for simplicity. 

SI is a milder condition that can be used to compare more cases than TP . For 
example, for a system with three states, Π  = (0.1, 0.5, 0.4) and Π  = (0.1, 0.2, 0.7) 
describe the system’s state at two different time periods, t  and t ; Π  describes a more 
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deteriorated state than Π . In this case, Π   SΠ  holds; it is impossible to order them 
from TP  ordering. For this system, if the state transition probability matrix P is given as 

     0    1   2 

 
         0
P  1
         2

0.2 0.3 0.5
0 0.4 0.6
0 0 1

,                            (2.1) 

P has an SI property but does not satisfy the condition of TP . 
 
2.2 Assumptions 
 
In this research, the following assumptions are made. 
(A-1) Transition probability matrix P (={p }) has a property of SI (P∈SI). 

Assumption A-1 implies that the more a system has deteriorated, the more likely it 
is to deteriorate further or fail. 

(A-2) Observed conditional probability matrix Γ (= {γ }) has a property of TP , and the 
form is given as 

                            0         θ           M 

Γ=

0

i

N 1
N

γ γ M

γ γ M

, , ,
0 0 1

∈ TP . 

This assumption implies that higher states of the system give rise to higher output 
levels of the monitoring probabilistically and that the true internal state of the 
system can be known exactly when the system is down completely. This is a natural 
condition in actual situations. 

(A-3) Discount factor β satisfies 
β R CN

R C
  

(A-4) “Keep” cost C  is a nondecreasing function of state i(denoted by C ↑ (i)), and the 
relationship between “Keep” cost C  and “Replace” cost R is 

C C CN R CN 
 
A typical example of the cost functions under assumptions A-3 and A-4 is shown in 
Figure2.1. “Keep” cost C  increases gradually with the deterioration of the system and 
rises rapidly if the system breaks down. That is,CN is quite large compared with C , C , 
···, CN  and R. “Replace” cost R is between CN  and CN. 

In the case of an aircraft, for example, a fatigue crack in the fuselage can lead to a 
crash (failure). Horizontal a x is II in Figure 2.1 represents the state (the crack length) of 
the fuselage. When the length exceeds the limit criterion, the fuselage breaks, possibly 
leading to a crash. In states 0 − (N −1) (the crack is shorter than the limit criterion), there 
is almost no increase in the “Keep” cost since the aircraft can still fly safely. However, 
“Keep” cost CNfor state N (crash due to break in fuselage) becomes immeasurably huge. 
CN is also hugecompared with R. 



 

L. Jin and K. Suzuki 73

A multiple load path structure and damage tolerance design are commonly used to 
minimize fatigue crack extension and improve fuselage reliability. Therefore, we can 
divide fuselage deterioration into several stages (e.g., N + 1 states) in accordance with the 
crack length and take a preventive countermeasure at an early stage before failure occurs 
(state N). 

 

 
Figure 2.1. Cost functions under assumptions A-3 and A-4 

 
 
2.3 Lemmas 
 
Several lemmas were used in this research. For notation convenience, let = 
( , , , N ) in which :=∑ π pN , and h ↑ ( j) denote the nondecrease of 
h in j. 

 Lemma 1 
For Π SΠ  

S  
 

holds if P ∈SI. Here, Π = (π ,π , πN ), Π = (π ,π , πN ), and  
P={p . 
 

 Lemma 2 (Lehmann, 1959) 
For h ↑ ( j), 

∑ hN ∑ hN   
if S . 
 

 Lemma 3 (Lehmann, 1959) 
For matrix Γ∈TP , if the sign of h changes once in j, the sign of∑ hN γ   
changes once at most in i. 
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2.4 Monotone procedure 
 
Since the monitor information is incomplete, we select one action on the basis of prior 
state probability vector Π. Let Α= {1(Keep), 2(Replace)} be the action space, and let the 
set of all maintenance procedures Δ be the set of all functions δ :Ω = {Π∈  } →Α. 
The previous history of any fixed sequence of monitor output sand actions is summarized 
into current state probability vector Π (Sawaragi and Yoshikawa (1970). 
 

 Monotone Procedure: 
The procedure δ ∈Δ is said to be “monotone” if implies δ( ) ≤ δ( ), 
where δ( ), δ( ) ∈{1(Keep), 2(Replace)}. 
 

Here, “ ” represents partial ordering. We use partial ordering in the sense of SI. 
 

If the optimal procedure is a monotone procedure, the tremendous amount of 
calculation time required to find the optimal procedure can be greatly reduced. This 
enables the optimal decision to be identified in a much shorter period of time. 

For example, if the system has two states, prior state probability vector  is given as 
(1 −π, π). Therefore,  can be described by a function of π. For the two-actions case, we 
have to select the optimal procedure out of 2 ≈10  procedures if state probability π is 
divided into 100 intervals. If the optimal procedure is given as 

π i           Keep
  π i       Replace, 

we say the optimal procedure is a “monotone procedure,” and we need to consider at most 
only 100 + 1 procedures instead of all 10  (see Figure 2.2). This enables the optimal 
decision to be identified in a much shorterperiod of time. 
 

 
Figure 2.2. Monotone procedure (two states) 

 
 

3. OPTIMAL MAINTENANCE PROBLEM 
 

3.1 Partially observable Markov decision process (POMDP) 
 

At the beginning of any time period, “Keep” or “Replace” is selected as the action. 
The optimal procedure is the collection of actions that minimize the discounted total 
expected cost incurred in both current and future time periods for every possible given 
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state. The problem is how to minimize the discounted total expected cost over an infinite 
horizon. This problem is formulated as a partially observable Markov decision 
process(POMDP). 

 

 
Figure 3.1. Partially observable Markov decision process (POMDP) 

 
A schematic representation of POMDP is given by Figure 3.1. It starts from the left 

lower frame with “ .” At any time period, since the state information obtained from the 
monitor is incomplete, we describe the system’s exact state using prior state probability , 
in which the monitoring information and the system history are aggregated. At the 
beginning of time period t, an action that minimizes the total cost over both the current 
and future time periods should be selected. The discounted total expected cost V( ) can be 
calculated on the basis of , and the decision maker determines the most suitable action, 
the one that minimizes the discounted total expected cost V( ) (refer to δ3.2 for details). 

If “Keep” is selected as the optimal action, the true internal state transitions to 
Xt+1 in accordance with transition probability matrix P (common for t). At the next time 
period t + 1, the monitor gives an observation(Mt = θ) based on conditional probability 
matrix Γ. We can obtain posterior state probability T( , θ) based on observation θ and 
prior state probability Π, and the posterior state probability T( , θ) of time period “t” is 
updated to be prior state probability Π of time period “t + 1” with probability P(θ| ). 

P(θ| ) = Pr(Mt+1 = θ| ) =∑ ∑ πNN p γ ,                (3.1) 
and the j-th element of posterior state probability vector T( , θ) is 

T(j| , θ) = Pr(Xt+1 = j| , Mt+1 = θ) 

=
∑N

∑ ∑NN ,
=

P | 
.                     (3.2) 

If “Replace” is selected as the optimal action, the system is replaced by a new one, 
and the true internal state of the next time period (Xt+1) becomes “0.” The state 
probability is updated from  to e with probability1 in the next time period, where 

e = (1, 0, ···, 0, ···, 0). 
A POMDP can be applied to the preventive maintenance of all kinds of systems. For 

example, a nuclear power plant has a refueling period (about 40 days in Japan) after 13 
months of operation. One refueling period together with one operation period is treated as 
one time period. The overall state of the operation unit is checked during the refueling 
period. The true state of the operation unit, which cannot be observed directly, is 
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estimated on the basis of monitor information and the operation history. The estimated 
true state is described by prior state probability Π. The optimal maintenance action 
(“Keep” or “Replace”) for the operation unit isidentified on the basis of Π before every 
operation period. 

If the optimal procedure, which is the collection of actions that minimize the 
discounted total expected cost V( ) for every , is a monotone procedure, the optimal 
maintenance action for the operation unit can beidentified quickly. 

 
3.2 Total expected cost 
 
Let V( ) denote the discounted optimal total expected cost function over an infinite time 
period with initialstate probability . 

V( ) = min
∑ C π β · ∑ P θ| V T , θ KVMN

R β · V e RV
           (3.3) 

 
This is a recursive function that can be calculated on the basis of state probability Π; β (0 
< β <1) is the discount factor. The first (second) term, KV( ) (RV( )), on the right 
corresponds to the total expected costover the current and future time periods when “Keep” 
(“Replace”) is selected at the beginning and the optimal procedure is then followed. 

The action that minimizes the right side of (3.2) is the optimal one and should be 
selected for prior state probability vector . Hence, the optimal procedure is obtained by 
selecting the action that minimizes the discounted total expected cost for each . 

Next, we examine the properties of the optimal total expected cost function. On the 
basis of (3.3), we consider functions V ( )(n = 0, 1, 2, ··· ), which are defined 
inductively as 

V ( )= 0, 

V ( )=min
∑ C π β · ∑ P θ| V T , θ KVMN

R β · V e RV
n 1 .  

  (3.4) 
V (Π)is interpreted as the optimal expected cost over n(≥1) time periods. From the 
standard argument of contraction mapping theory, V ( )must converge to V( ) as n 
tends to infinity. 
 
3.3 Preliminary properties 
 
Given the assumptions in Section 2.2 and the lemmas in Section 2.3, we obtain the 
following preliminary properties for function  C , which are used in the following 
subsections. 

 

C

0    
C ∑ R C γM

I

C β ∑ CN p C ∑ γM

  n 1
  n 2
  n 3

,      (3.5) 
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and 
C R βC β ∑ C pN C β ∑ C pN  n 3 . (3.6) 

 
 Preliminary Property 1: 

 
C ≥ 0 for n ≥ 3 and j ≤ N −1. 
 

 Preliminary Property 2: 
 

C ↑ (j) for any n ≥ 1 and j ≤ N. 
 

 Preliminary Property 3: 
 

The total expected cost function for n (≥ 3) time periods is given by 
 

V ( ) = min
∑ C π β ∑ CNN

R βC β ∑ C pN
 

 
The proofs of these preliminary properties are given in the appendix. 
 
3.4 Properties of optimal total expected cost function 
 
In this subsection, we examine the properties of the optimal total expected cost function 
given the preliminary properties in Section 3.3. Let  denote the class of all functions of 
V( ) that satisfy V( ) ≤ V( ) for S . 
 

 Property 1: 
 

The total expected cost function over one time period is given by 

V ( ) = min ∑ π CN

R
,                      (3.7) 

and V ( ) ∈ . 
 
Property 1 can clearly be derived from assumption A-4 and Lemma 2. 
 

 Property 2: 
 

The total expected cost function over two time periods is given by 

V ( ) = min
∑ π C β ∑ CNN

R βC
,             (3.8) 

and V ( ) ∈ . 
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Proof: 
 
From (3.4), we get 

V ( = min
∑ C π β ∑ P θ| V T , θ KVMN

R βV e RV
.  (3.9) 

KV (  in (3.9) can be written as 

KV ( =∑ C π β · ∑ min
∑ C γN

∑ R γN
MN          (3.10) 

from (3.1), (3.2), and (3.7). Taking the difference between the two terms after 
“min” in (3.10), we get ∑ RN C γ , the sign of which changes at most 
once in θ given the assumptions in Section 2.2 and the lemmas in Section 2.3. 
This means that there exists at most one θ 0 θ M  for which the sign of 
∑ RN C γ  changes. Therefore, (3.10) can be written as 

KV ∑ π C β ∑ CNN  ,             (3.11) 
Where 

C C ∑ R C γM .                (3.12) 
 

Therefore, the total expected cost function can be written as 

V (  = min
∑ π C β ∑ C KVMN

R βC RV
         (3.13) 

since 
RV R βV e R βmin C

R     R βC  . 
 

From assumption A-4 and Lemma 2, we get 
 

∑ π CN ∑ π CN ,      .            (3.14) 
Since C ↑ (j) from Preliminary Property 2, and S  from assumption 
A-1 based on Lemma1, we get 

∑ CN ∑ CN ,      .          (3.15) 
 

Therefore, KV ( ≤ KV ( for  from (3.11), (3.14), and 
(3.15). RV  in (3.13) is a constant function of . Therefore, V ( ∈  
from the assumptions in Section 2.2. 
 

 Property 3: 
 

V (Π (n ≥ 3), which is the total expected cost over n (≥ 3) time periods, is an 
element of . 
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Proof: 

 
From Preliminary Property 3, we get 
 

V (  = min
∑ C π β ∑ C : KVNN

R βC β ∑ C pN : RV
.    (3.16) 

 
Similar to the discussion of Property 2, we obtain KV ≤ 
KV  forΠ from the lemmas in Section 2.3 and Preliminary 
Property 2. RV  in (3.16) is a constant function of Π. 
Therefore, V ∈ from the assumptions in Section 2.2. 
 

Given properties 1, 2, and 3, we derive the following theorems. 
 

 Theorem 1: 
 

The total expected cost over infinite time periods,V , is an element of . 
 
Proof: 

 
From properties 1, 2, and 3, we have V ( ∈ for any n ≥ 1. This guarantees 
V ∈ since V (  converges to V as n tends to infinity. 
 
Theorem 1 means that, given the assumptions in Section 2.2, the optimal 
monotone procedure holds with respect to SI ordering of the state probability 
vectors . Arranging the content of Theorem 1, we obtain the following 
structural property as Theorem 2. 
 

 Theorem 2: Structural Property 
 

There exists an optimal procedure that is a monotone procedure. That is, the 
optimal procedure is determined by Π , such that the system is kept operating 
for <S nd is replaced for  .The structural property of the monotone 
procedure in Theorem 2 is illustrated in Figure 3.2. It is assumed thatΠ locates 
on the horizontal axis, ordered by SI ordering. As shown in Figure 3.2, if the 
optimal procedure is given by a monotone procedure as Theorem 2, we need to 
determine at most one threshold atwhich the optimal action changes. Since 
we do not need to consider the optimal actions for each , the calculation time 
to find an optimal procedure is reduced. 
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Figure 3.2. Structural property of monotone procedure 

 
 

3.5 Discussion 
 

The optimal procedure described above is similar to one introduced elsewhere 
(Derman, 1963, Karlin and Rubin, 1956). Derman (1963) investigated the optimal 
replacement problem for a multi-state deteriorated system for which the true internal state 
could be known exactly. This means that conditional probability matrix Γ was an identify 
matrix. The optimalprocedure was found to be a monotone procedure when state transition 
probability matrix P had an SI property. Karlin and Rubin (1956) investigated the case of 
incomplete observations without state transitions. This means that state transition 
probability matrix P was an identify matrix. They proved that the TP2 property of 
conditional probability matrix Γ is a sufficient condition for the optimal procedure to be a 
monotone procedure with respect to TP2 ordering of the state probability vectors . This 
research investigated the optimal maintenance problemfor a general model of a 
monitoring system with state transitions and incomplete observations and found that the 
optimal procedure is a monotone procedure with respect to SI ordering of  when P has 
an SI property andΓ has a TP2 property. 
 
 

4. CONCLUSION 
 

This research investigated the optimal replacement problem for a multi-state 
deteriorated system for which the true internal state cannot be observed directly except 
when the system breaks down completely. It found that the optimal procedure is a 
monotone procedure with respect to Stochastic Increasing (SI) ordering of the state 
probability vectors Π when the transition probability matrix has an SI property and the 
conditional probability matrix has a Totally Positive of order 2 (TP2) property under some 
assumptions. This finding can be used to greatly reduce the tremendous amount of 
calculation time required to find the optimal procedure, enabling the optimal decision to 
be identified in a much shorter period of time. 
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APPENDIX 
 

A.1 Proof of Preliminary Property 1 
 
   C ≥ 0 for n ≥ 3 and j ≤ N −1, where 

C R βC β ∑ C pN C β ∑ C pN .  
Proof: 
 
We prove Preliminary Property 1 using mathematical induction. 
 

 Step 1) For n = 3, C ≥ 0 ( j≤ N −1). 

C  R βC  C β ∑ C pN   

                        R βC  CN β ∑ C pN  

    β R ∑ C pN  β ∑ R C pN       (A.1) 
 

since C CN (j ≤ N −1) and β ≤ R CN
R C

. From (A.1), we derive C ≥ 0 (j≤ 

N −1) since R ≥ C  from (3.12). 
 

 Step 2) For n = 4, C ≥ 0 (j≤ N −1). 

C R βC β ∑ C pN C β ∑ C pN   

       R βC β ∑ C pN CN β ∑ C pN   

βR β ∑ C pN β ∑ C pN                     (A.2) 
Since C CN (j ≤ N −1) and β ≤ R CN

R C
. We get C C  from (3.12). 

From (3.5) and (3.6), we get 
C ∑ C β ∑ C pN γ ∑ R βC γM  .      (A.3) 

 
Then we obtain C ≤ R + βC  from (A.3) since C ≥ 0 in Step 1. Therefore, 
(A.2) can be written as 

    C βR β ∑ C pN β ∑ R βC pN β ∑ C C p 0.N   
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 Step 3) For n ≥ 5, C ≥ 0 if C ≥ 0 and C ≥ 0 ( j≤ N −1). 

 
From (3.5), we get 

               C ∑ C β ∑ CN p γ   

 ∑ R βC β ∑ C pN γ . M     (A.4) 

 C ∑ C β ∑ CN p γ  

∑ R βC β ∑ C pN γ . M     (A.5) 

For j ≤ N −1, if C ≥ 0, we have 

C  R βC β ∑ C p  
N               (A.6) 

from (A.4), and, if C ≥ 0, we get 

C β ∑ C pN C                  (A.7) 
       from (A.5). From (A.6), we derive 

 
C R βC β ∑ C pN C β ∑ C pN   ,  

    
R βC β ∑ C pN C β R βC β ∑ C pN  

            
R βC β ∑ C pN CN β R βC β ∑ C pN  

β ∑ C pN β C β ∑ C p  ,N                         (A.8) 
 

since β ≤ R CN
R C

. From (A.7) and (A.8), we derive 

     C β ∑ C β ∑ C pNN p β C β ∑ C pN ,  
             β ∑ C C pN 0  

 
Therefore, C ≥ 0 for n ≥ 3 and j ≤ N −1 from steps 1, 2, and 3. 
 
 
A.2 Proof of Preliminary Property 2 
 
   C ↑ (j) for any n ≥ 1 and j ≤ N. 
 
Proof: 
 

We prove Preliminary Property 2 using mathematical induction. 
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 Step 1) For n = 2, C ↑ ( j) ( j ≤ N). 
 

Taking the difference C ′ −C ( j<j′ <N), we get 
 

     C C C C ∑ RγM ∑ RγM  
              ∑ C γ ∑ C γMM             

                C C ∑ C γ ∑ C γMM  
              ∑ C γ ∑ C γMM                       

  ∑ C γ ∑ C γ 0  
since Γ∈TP2 from assumption A-2 and C ≤C ≤R from assumption A-4. 
Therefore, C ↑ (j) for j <N. For j = N, CN = R since∑ γM =1 from 

assumption A-2. Therefore, C ↑ (j) for any j ≤ N since 

max{C R( j <N) 
from (3.12). 
 

 Step 2) For n ≥ 3, C ↑ ( j) if C ↑ ( j) ( j ≥ N). 
 

Taking the difference C −C ( j<j′ <N), we get 
 

       C C ∑ C β ∑ C pN γ  

                ∑ C β ∑ C pN γ   

                R βC β ∑ C pN ∑ γ ∑ γMM .  
 

Since R + βC0 + β ∑ C pN ≥ C + β ∑ C pN  from C ≥ 0 
(Preliminary Property 1), we get 

       C C ∑ C β ∑ C pN γ  

∑ C β ∑ C pN γ   

                       C β ∑ C pN ∑ γ ∑ γMM        

                C β ∑ C pN C β ∑ C pN ∑ γ .  
 

On the basis of Lemma 2, we obtain C C ≥ 0 ( j<j′ <N) from the 
following relationships: 

– C ↑(j) (from assumption A-4), 
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–C ↑(j) (from assumption in Step 2), 
–P∈SI (from assumption A-1). 
 

Therefore, C is a nondecreasing function of j (<N), and 

max C   β β ∑ C pN     

since R + β + β ∑ C pN ≥ + β∑ C pN  from C ≥ 0 
(Preliminary Property 1).  
For j = N, we have 

CN   β β ∑ C pN   
since ∑ γM 1. Therefore, C is a nondecreasing function for any  
j ≤ N. 
 

From (3.5), C = 0. Therefore, we derive that C ↑ (j) for any n ≥ 1 and j ≤ N from 
steps 1 and 2. 
 
 
A.3 Proof of Preliminary Property 3 
 
Total expected cost function for n (≥ 3) time periods is given by 
 

V (  = min
∑ C π β ∑ CNN

R βC β ∑ C pN
   . 

 
Proof: 
 

We prove Preliminary Property 3 using mathematical induction. 
 

 Step 1) For n = 3: 
 

From (3.3) and (3.4), V (  can be written as 
 

V ( = min
∑ C π β · ∑ P θ| V T , θ KVM ΠN

R βV e RV
 . (A.9) 

The first term of (A.9), KV ( , can be written as 

KV ∑ C π β ∑ min
∑ C β ∑ C pN γN

∑ R βC γN
MN   (A.10) 

from (3.8). Taking the difference between the two items after “min” in (A.10),  
we get 
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∑ R βC C β ∑ C pNN γ .            (A.11) 
Since Γ(= {γ }) has a property of TP2 and ≥ 0, we get { γ } ∈TP2. On 
the basis of Lemma 2, we get∑ C pN ↑ ( j) since C ↑ ( j) and P ∈SI. 
Therefore, (A.10) can be written as (A.12) since the sign of (A.11) changes once 
at most in accordance with Lemma 3. 

KV ∑ C π β ∑ CN   ,N            (A.12) 
where 

         C C β ∑ C pN R βC C β ∑ C pN ∑ γM   .  
 

The second term of (A.9), RV , can be written as 

RV R βmin C β ∑ C pN

R βC
    .  

From (3.12), we have 
C C R .                      (A.13) 

From assumptions A-3 and A-4 and (A.13), we get 
       R βC C β ∑ C pN 0.  

Then, 
    RV R βC β ∑ C pN  .  

Therefore, the total expected cost when n = 3 can be written as 

      V (  = min
∑ C π β ∑ CNN

R βC β ∑ C pN
 

 
 Step 2) For n >3: 

 
We suppose 

V (  = min
∑ C π β ∑ CNN

R βC β ∑ C pN
            (A.14) 

and prove 

V (  = min
∑ C π β ∑ CNN

R βC β ∑ C pN
 

From (3.3) and (3.4), the total expected cost for n time periods can be written as 
 

V ( = min
∑ C π β ∑ P θ| V T , θ KVMN

R βV e RV
  .   

(A.15) 
 

From (A.14), KV , the first term of (A.15), can be written as 
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KV ∑ C π β ∑ min
∑ C β ∑ C pN γN

∑ R βC β ∑ C pN γN
MN . 

(A.16) 
Taking the difference after “min” in (A.16), we get 
 

∑ R βC β ∑ C pNN γ ∑ C β ∑ C pN γN .  
(A.17) 

From the following relationships, 
– C ↑ ( j) (from assumption A-4), 
– C ↑ (k) (from Preliminary Property 2), 
– P ∈SI (from assumption A-1), 
– { γ }∈TP2 (from assumption A-2), 
– R βC β ∑ C pN is a constant function of j, 

We derive that the sign of (A.17) changes at most once in accordance with 
Lemma 3. Therefore, (A.16) can be written as 

KV ∑ C π β ∑ CN   ,N            (A.18) 
where 

                C ∑ C β ∑ C pN γ   

                ∑ R βC β ∑ C pN γM   
The second term of (A.15) can be written as 

RV R βmin
C β ∑ C pN

R βC β ∑ C pN
  

      R βC β ∑ C pN   36   
since 

R βC β ∑ C pN C β ∑ C pN 0  
from Preliminary Property 1. Therefore, the total expected cost for n (>3) time 
periods can be written as 

V (Π  = min
∑ C π β ∑ CNN

R βC β ∑ C pN
 

from (A.18) and (A.19). 
Therefore, Preliminary Property 3 is proved from the results of steps 1 and 2. 
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