MR 영상에서 정규화된 기울기 크기 영상을 이용한 자동 간 분할 기법

Automatic Liver Segmentation Method on MR Images using Normalized Gradient Magnitude Image

  • 이정진 (가톨릭대학교 디지털미디어학부) ;
  • 김경원 (울산대학교 의과대학 영상의학과) ;
  • 이호 (스탠포드대학교 방사선종양학과)
  • 투고 : 2010.06.24
  • 심사 : 2010.09.20
  • 발행 : 2010.11.30

초록

본 논문에서는 자기 공명 영상에서 고속의 간 분할 기법을 제안한다. 제안 기법은 MR 영상을 정규화된 기울기 크기 정보를 바탕으로 효율적으로 객체와 경계로 구분한다. 다음으로 간 영역에 해당하는 객체를 직전에 분할된 슬라이스의 간 영역에서 추출된 씨앗점들로 2차원 씨앗점 영역 성장법을 이용하여 검출한다. 마지막으로 롤링 볼 알고리즘과 연결 요소 분석 기법을 사용하여 간 경계 부근의 위양성 오차를 최소화한다. 20명의 환자 데이터에 대하여 제안 기법으로 분할한 결과와 수작업으로 분할한 결과를 비교하여 정확성을 검증하였다. 평균 볼륨 오버랩 오차 5.2%였고, 평균 절대값 볼륨 측정 오차는 1.9%였다. 제안 기법으로 한 환자 데이터를 분할하는 데 소요되는 평균 시간은 약 3초 정도였다. 제안 기법은 빠르고, 정확한 간 분할을 필요로 하는 컴퓨터 보조 간 진단 기법에 사용될 수 있다.

In this paper, we propose a fast liver segmentation method from magnetic resonance(MR) images. Our method efficiently divides a MR image into a set of discrete objects, and boundaries based on the normalized gradient magnitude information. Then, the objects belonging to the liver are detected by using 2D seeded region growing with seed points, which are extracted from the segmented liver region of the slice immediately above or below the current slice. Finally, rolling ball algorithm, and connected component analysis minimizes false positive error near the liver boundaries. Our method was validated by twenty data sets and the results were compared with the manually segmented result. The average volumetric overlap error was 5.2%, and average absolute volumetric measurement error was 1.9%. The average processing time for segmenting one data set was about three seconds. Our method could be used for computer-aided liver diagnosis, which requires a fast and accurate segmentation of liver.

키워드

참고문헌

  1. Y. Masutani, K. Uozumi, M. Akahane, and K. Ohtomo, "Liver CT Image Processing: a Short Introduction of the Technical Elements," European Journal of Radiology, Vol. 58, No. 2, pp. 246-251, 2006. https://doi.org/10.1016/j.ejrad.2005.11.044
  2. K. W. Kim, J. Lee, H. Lee, W. K. Jeong, H. J. Won, Y. M. Shin, D. Jung, J. I. Park, G. Song, T. Ha, D. Moon, K. Kim, C. Ahn, S. Hwang, S. Lee, "Right Lobe Estimated Blood-free Weight for Living Donor Liver Trans plantation: Accuracy of Automated Blood-free CT Volumetry - Preliminary Results 1," Radiology, Vol. 256, No.2, pp. 433-440, 2010. https://doi.org/10.1148/radiol.10091897
  3. S. J. Lim, Y. Y. Jeong, and Y. S. Ho, "Automatic Liver Segmentation for Volume Measurement in CT Images," Journal of Visual Communication and Image Representation, Vol. 17, No.4, pp. 860-875, 2006. https://doi.org/10.1016/j.jvcir.2005.07.001
  4. A. Schenk, G. Prause, and H. O. Peitgen, "Efficient Semiautomatic Segmentation of 3D Objects in Medical Images," Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 186-195, 2000.
  5. S. Pan and B. M. Dawant, "Automatic 3D Segmentation of the Liver from Abdominal CT Images: a Level-set Approach," Proceedings of SPIE Medical Imaging, Vol. 4322, pp. 128-138, 2001.
  6. J. Gao, A. Kosaka, and A. Kak, "A Deformable Model for Automatic CT Liver Extraction," Academic Radiology, Vol. 12, No.9, pp. 1178-1189, 2005. https://doi.org/10.1016/j.acra.2005.05.005
  7. H. Lamecker, T. Lange, and M. Seebass, "Automatic Segmentation of the Liver for Preoperative Planning of Resections," Studies in Health Technology and Informatics, Vol. 94, pp. 171-173, 2003.
  8. H. Lamecker, T. Lange, and M. Seebass, "Segmentation of the Liver using a 3D Statistical Shape Model," ZIB-Report, Vol. 4, No. 9, pp. 1-25, 2004.
  9. T. Heimann et al., "Comparison and Evaluation of Methods for Liver Segmentation from CT Datasets," IEEE Transactions on Medical Imaging, Vol. 28, No.8, pp. 1251-1265, 2009. https://doi.org/10.1109/TMI.2009.2013851
  10. S. W. Farraher, H. Jara, K. J. Chang, A. Hou, and J. A. Soto, "Liver and Spleen Volumetry with Quantitative MR Imaging and Dual-space Clustering Segmentation," Radiology, Vol. 237, No. 1, pp. 322-328, 2005. https://doi.org/10.1148/radiol.2371041416
  11. O. Gloger, J. Kuhn , A. Stanski, H. Volzke, and R. Puis, "A Fully Automatic Three-step Liver Segmentation Method on LDA-based Probability Maps for Multiple Contrast MR Images," Magnetic Resonance Imaging, Vol. 28, No.6, pp. 882-897, 2010. https://doi.org/10.1016/j.mri.2010.03.010
  12. R. T. Whitaker and X. Xue, "Variable-conductance, Level-set Curvature for Image Denoising," IEEE Proceedings of International Conference on Image Processing, Vol. 3, pp. 142-145, 2001.
  13. W. K. Pratt, Digital Image Processing, John Wiley & Sons, Inc., pp. 414-417, 2001.
  14. J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, and Y. G. Shin, "Efficient Liver Segmentation Exploiting Level-set Speed Images with 2.5D Shape Propagation," Proceedings of MICCAI Workshop on 3D Segmentation in the Clinic: a Gand Challenge, pp. 189-196, 2007.
  15. S. G. Armato, M. L. Giger, C. J. Moran, H. MacMahon, and K. Doi, "Automated Detection of Pulmonary Nodules in Helical Computed Tomography Images of the Thorax," Proceedings of SPIE Medical Imaging, Vol. 3338, pp. 916-919, 1998.
  16. V. J. Tuominen, S. Ruotoistenmaki, A. Viitanen, M. Jumppanen, and J. Isola, "ImmunoRatio: a Publicly Available Web Application for Quantitative Image Analysis of Estrogen Receptor (ER), Progesterone Rceptor (PR), and Ki-67," Breast Cancer Research, Vol. 12, No. 4, pp. 1-12, 2010. https://doi.org/10.1186/bcr2730
  17. F. Chang, C. J. Chen, and C. J. Lu, "A Linear-time Component- labeling Algorithm using Contour Tracing Technique," Computer Vision and Image Understanding, Vol. 93, No. 2, pp.206-220, 2004. https://doi.org/10.1016/j.cviu.2003.09.002
  18. R. Malladi, J. A. Sethian, and B. C. Vemuri, "Shape Modeling with Front Propagation: a Level Set Approach," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, pp. 158-175, 1995. https://doi.org/10.1109/34.368173
  19. V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic Active Contours," International Journal of Computer Vision, Vol. 22, No. 1, pp. 61-97, 1997. https://doi.org/10.1023/A:1007979827043