2차원 및 3차원 수중 센서 네트워크에서 에너지 효율적인 데이터전송 알고리즘

Energy Efficient Data Transmission Algorithms in 2D and 3D Underwater Wireless Sensor Networks

  • 김성운 (부경대학교 정보통신공학과) ;
  • 박선영 (부경대학교 전자정보통신공학과) ;
  • 천현수 (부경대학교 정보통신학과) ;
  • 김근호 (KAIST 전산학과)
  • 투고 : 2010.02.12
  • 심사 : 2010.09.06
  • 발행 : 2010.11.30

초록

수중 센서 네트워크(UWSN: Underwater Wireless Sensor Networks)는 수중 센서 노드들의 에너지 자원의 제약이 심하고, 제한된 통신 대역폭과 다양한 전파지연 등의 환경적인 특성 때문에 효율적이고 안정적인 데이터전송 방법이 요구된다. 본 논문에서는 수중 센서 네트워크의 센서 노드들이 해양 바닥에 고정된 2차원 구조(2D: two-dimensional underwater wireless sensor network model)에서 이상적인 셀 크기의 육각 모자이크 구조를 이용한 향상된 하이브리드 전송 방법을 설명하고, 또한 센서 노드를 해양 바닥의 닻에 매달아 움직임이 가능한 3차원 구조(3D: three-dimensional underwater wireless sensor network model)에서 효과적인 데이터전송을 위한 에너지 효율적인 인식 및 통신범위를 확장하는 방법을 제안한다. 2D 및 3D 구조에서 제안된 방법들은 시뮬레이션 결과에 의해 기존의 전송 방법보다 높은 에너지 효율성을 가지는 것이 확인되었다.

Underwater wireless sensor networks (UWSN) need stable efficient data transmission methods because of environmental characteristics such as limited energy resource, limited communication bandwidth, variable propagation delay and so on. In this paper, we explain an enhanced hybrid transmission method that uses a hexagon tessellation with an ideal cell size in a two-dimensional underwater wireless sensor network model (2D) that consists of fixed position sensors on the bottom of the ocean. We also propose an energy efficient sensing and communication coverage method for effective data transmission in a three-dimensional underwater wireless sensor network model (3D) that equips anchored sensors on the bottom of the ocean. Our simulation results show that proposed methods are more energy efficient than the existing methods for each model.

키워드

참고문헌

  1. N.N. Soreide, C.E. Woody, and S,M. Holt, "Overview of ocean based buoys and drifters: Present applications and future needs," 16th International Conference on Interactive Information and Processing System (IIPS) for Meteorology, Oceanography, and Hydrology, Jan. 2004.
  2. I. F, Akyildiz, et al, "Underwater Acoustic Sensor Networks: Research Challenges, "Elsevier's Journal of Ad Hoc Networks. Vol. 3, Issue 3, pp. 257-279, May2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  3. 이종근, 박현훈, 박진호, 김성운, "수중 센서 네트워크레서 향상된 인식 효율성을 위한 센서의 배치 및 이동 알고리즘," 대한전자공학회 하계 종합학술대회 논문집, 제 30권, 제1호, pp. 63-64, 2007.
  4. J.H. Cui, J.J. Kong, M. Gerla, and S. Zhou, "Challenges: Building Scalable and Distributed Underwater Wireless Sen or Networks (UWSNs) for Aquatic Application," UCONNCSE Technical Report: UbiNet-TR05-02, Jan. 2005.
  5. Sungun Kim, Hyunsoo Cheon, Sangbo Seo, Seungmi Song, and Seonyeong Park, "A Hexagon Tessellation Approach for the Transmission Energy Efficiency in Underwater wireless Sensor Networks", Journal of Information Processing Systems, Vol. 6, No.1, 2010.
  6. M. Ettus, "System capacity, latency, and power consumption in Multi-hop routed SSCDMA wireless networks," Proc. Radio and Wireless Conf, pp.55-58, Aug. 1998.
  7. A. Mahapatra, K. Anand, and D. P. Agrawal, "QoS and energy aware routing for real-time traffic," Wireless sensor networks Computer Communications, Vol. 29, pp.437-445, 2006.
  8. Y. Xu, J. Heidemann, and D. Estrin, "Geography-Informed Energy Conservation for Ad Hoc Routing," Proc. Seventh Ann. Mobile Computing and Networking, July 2001.
  9. R. J. Urick, Principles of Underwater Sound, Mcgraw-Hill, 1983.
  10. R. Jurdak, et al, "Battery lifetime estimation and optimization for underwater sensor networks," IEEE Sensor Network Operations, Jun. 2004.
  11. Q. Xue and A. Ganz, Maximizing sensor network lifetime: Analysis and design guides, In Proceedings of MILCOM, 2004.
  12. Underwater Acoustic Modem. Available: www.link-quest.com.
  13. Baase and Van Gelder, Computer Algorithms, Third Edition, Addison-Welsey Publishers, 2000.