A Fast MSRCR Algorithm Using Hierarchical Discrete Correlation

HDC를 이용한 고속 MSRCR 알고리즘

  • 한규필 (금오공과대학교 컴퓨터공학과)
  • Received : 2010.04.06
  • Accepted : 2010.09.13
  • Published : 2010.11.30

Abstract

This paper presents an improved fast MSRCR algorithm that MSRs are commonly adopted at tone mapping in color vision. Conventional MSRs consist of three SSRs, which use three Gaussian functions with different scales as those surround ones. This convolution processes require much computation load. Therefore, the proposed algorithm adopts a hierarchical discrete correlation which is equivalent to Gaussian function and the Retinex process is only applied to the luminance channel in order to get a fast processing. A simple color preservation scheme is applied to the Retinex output from the luminance channel in the proposed MSRCR algorithm. Experimental results show that the proposed algorithm required less number of oprations and computation time about 1/9.5 and 1/3.5 times, respectively, than those of the simplest MSR and was equivalent to conventional MSRs.

본 논문에서는 칼라비전의 색사상에서 가장 많이 활용되는 MSR(multi-scale Retinex) 기법의 속도를 크게 개선한 MSRCR(MSR with color restoration) 알고리즘을 제시한다. 기존 MSR기법은 보통 3개의 SSR(single-scale Retinex)로 구성되며 각 SSR에 크기가 다른 Gaussian 주변함수를 사용하고 있으며, 이 함수와의 상승적분 부분에서 많은 계산이 요구된다. 그러므로 제안한 알고리즘은 속도를 높이기 위해 Gaussian 함수와 등가적인 HDC(hierarchical discrete correlation)를 사용하고 휘도영상에만 적용하는 기법을 제시하며, 휘도영상의 Retinex 결과 값을 이용하여 색이 보존되는 단순한 MSRCR 알고리즘을 개발하였다. 실험을 통하여 제안한 기법은 기존의 가장 단순한 MSR기법보다 연산량 및 속도를 1/9.5배, 1/3.5배로 줄일 수 있었으며 기존 기법과 동등한 결과를 얻을 수 있었다.

Keywords

References

  1. Daniel J. Jobson, Zia-ur Rahman, and Glenn A. Woodell, "A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes," IEEE, Transactions on Image Processing, Vol. 6, No. 7, pp. 965-976, 1997. https://doi.org/10.1109/83.597272
  2. 강봉협, 전창원, 고한석, "역광 사진의 빠른 보정을 위한 Retinex 알고리즘의 성능 개선," 대한전자공학회 논문지, Vol. 44-SP, No. 2, pp. 126-136, 2007.
  3. Laurence Meylan, "Tone Mapping for High Dynamic Range Images," a doctoral dissertation of EPFL, Lausanne, 2006.
  4. Edwin H. Land, "The Retinex," American Scientist, Vol. 52, No. 2, pp. 247-264, 1964.
  5. Edwin H. Land and John J. McCann, "Lightness and Retinex Theory," Journal of the Optical Society of America, Vol. 61, No. 1, 1971.
  6. Edwin H. Land, The Retinex Theory of Color Vision," Scientific American, Vol. 237, No. 6, pp. 108-128, 1977. https://doi.org/10.1038/scientificamerican1277-108
  7. Brainard, D. and Wandell, B., "Analysis of the Retinex Theory of Color Vision, Journal of the Optical Society of America, Vol. A3, No. 10, pp. 1651-1661, 1986.
  8. B. Funt, F. Ciurea, and J. McCann, "Retinex in Matlab," Journal of Electronic Imaging, Vol. 13, No.1, pp. 48-57, 2004. https://doi.org/10.1117/1.1636761
  9. Edwin H. Land, "An Alternative Technique for the Computation of the Designator in the Retinex Theory of Color Vision," Proc. National Academy of Sciences of the USA, Vol. 83, pp. 3078-3080, 1986. https://doi.org/10.1073/pnas.83.10.3078
  10. Wen Wang, Bo Li, Jin Zheng, Shu Xian, and Jing Wang, "A Fast Multi-scale Retinex Algorithm for Color Image Enhancement," Proc. of 2008 Int'l Conference on Wavelet Analysis and Pattern Recognition, pp. 30-31, Aug. 2008, Hong Kong.
  11. J. Morel, A. Petro, and Sbert, C. "A PDE Formalization of Retinex Theory," IEEE Transactions on Image Processing, Vol. PP, Issue:99, p. 1, May 2010.
  12. Ming Hao and Xingbo Sun, "A Modified Retinex Algorithm Based on Wavelet Transformation," 2nd Int'l Conference on Multimedia and Information Technology, Vol. 1, pp. 306-309, Kaifeng, April 2010.
  13. T. Okuno and T . Nishitani, "Efficient multi-scale retinex algorithm using multi- rate image processing," 16th IEEE International Conference on Image Processing, pp. 3145-3148, Cairo, Nov. 2009.
  14. R. Fattal, D. Lischinski, and M. Werman. "Gradient Domain High Dynamic Range Compression," Proc. ACM SIGGRAPH 2002. pp. 249-256, 2002, San Antonio, CA. 2002.
  15. Peter J. Burt, "Fast filter Transforms for Image Processing," Computer Graphics and Image Processing, Vol. 16, pp. 20-51, 1981. https://doi.org/10.1016/0146-664X(81)90092-7